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Abstract 

The aim of this paper is to present and analyze the basics of the simultaneous 
localization and mapping (SLAM) algorithm, implemented in micro Unmanned Aerial 
Vehicles – UAVs. In particular, two of the most essential elements for autonomous 
drone navigation are the localization and mapping. For a UAV, the ability to predict its 
position and recognize the surrounding environment is of the utmost importance. 
Hence, there are numerous techniques that rely on various sensors, such as navigation 
based on camera or localization based on GPS and laser beacons. These methods 
improve the performance of the self-navigating drone regarding its stability during the 
flight and its response in unknown environments. Owing to the advanced level of 
difficulty, these algorithms were developed with the view of operational consistency, not 
for perfection. This paper will initially present the fundamentals of SLAM, along with a 
detailed description of the importance of SLAM algorithms in regards to the autonomous 
navigation of a UAV. Secondly, the most widely adopted SLAM algorithms will be 
presented and explained. In the last part of this paper, an implementation of SLAM on a 
low cost commercial drone, will be presented. 

 

1. Description of the Simultaneous Localization & Mapping in regards the UAVs 

The development of the software part of an Unmanned Aerial Vehicle (UAV) is 
divided in two main subsystems: (1) the control system and (2) the navigation 
system. Simultaneous Localization and Mapping (SLAM) is the master feature of 
the navigation subsystem, due to its real-time influence in the entire performance of 
the drone.  

In particular, the SLAM is defined as a problem of continuous localization and 
mapping in an unknown environment. The absence of SLAM capabilities in a 
drone’s navigation system, may cause potential “blindness” to the drone, due to its 
space ignorance. The reason for this are the inaccurate measurements produced by 
the drone’s sensors along with the increased computing power needed for pose 
estimation. In addition, the combination of these along with other major external or 
not parameters, such as wind turbulences or suboptimal tuned control system, set 
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the drone in need for advanced localization and mapping algorithms, so as to 
maintain a stable autonomous flight.  

The Simultaneous Localization and Mapping task consists of two main operations, 
named Localization and Mapping. Localization is the term that refers to the 
continuous estimation of the drone’s current position, based on features taken from 
the map that the SLAM algorithm itself has created. The second term, mapping, 
refers to the process of creating a feature-based map containing essential key 
points of the environment, which can be detected by the drone’s sensors. These 
elements cooperate to produce a detailed map that can provide a real-time position 
estimation of the drone in a previously-unknown environment. The problem of 
SLAM is being solved by advanced mathematical algorithms, which detect features 
from sensor data and translate them into valuable information that compose a 
coordinate system. 

 

Description of the main mindset regarding the SLAM algorithms 

The fundamental mindset of the SLAM algorithms is based on approaches of 
probability and scan matching techniques. Sensors such as stereo or monocular 
cameras or laser beacons, mounted on the drone, provide these algorithms with 
essential information / inputs (images, videos, etc.). The Probability techniques are 
based on the Bayes Filter [1], Kalman Filter [2] and also, when the non-linear 
nature of the drone is considered, on the Extended Kalman Filter (EKF) [3]. The 
state estimation process involved is the most essential feature in this technique, 
since it is the core procedure for the real-time localization. Hence, during this 
process an estimated belief is calculated based on the previous states of the drone 
and the measurements data. In particular, a current state of the drone, which 
describes its velocity, acceleration and pose at every time instant, is the output of a 
two-step method: (1) the Prediction Step, (2) and the Update Step. Starting from 
the prediction step, the initial belief of the state of the drone is calculated based on 
the measurements and control data, in addition to the motion model. Afterwards, the 
update step is responsible for the update of the initial belief, taking into account the 
initial measurements and the sensor model; combining these, produces the final 
state estimation outcome. Last but not least, these steps are an iterative process so 
as to continually estimate the drone’s position. The Scan Matching techniques vary 
among feature to feature methods, point to point or even feature to point. These 
techniques are based on the analysis of the image in features or points, such as 
corners, edges and lines, or simple points. The main difference between the 
features and the points is that features are more accurate but more difficult to 
extract them from the image, while points can be easily extracted but also contain 
lower information quality. Hence, an F2F (feature to feature) method scans the 
captured image of the environment and matches the features of the first image with 
the features of the next image. In contrast, a P2P (point to point) method uses the 
Iterative Closest Point (ICP) [4] technique in order to match each initial point with 
the closest final belief point. The outcome of these methods is the estimation of the 
relative position of the drone on the map. 
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2. Motivation 

2.1 Importance of SLAM Algorithms 

While robots are developed to move independently in environments unknown to 
them, the navigation algorithms constitute the most essential tool for autonomous 
motion. Every robotic machine, such as a simple commercial drone or even a 
complex planetary rover, presupposes the existence of a navigation system able to 
meet the requirements of each desirable performance of a robot. Hence, as the 
most basic features of a navigation system are the real-time localization along with 
the accurate mapping of a given environment, algorithms which are part of the 
SLAM mindset are located high in the pyramid of importance, with regards to the 
effect on the performance of the robot. In particular, and as it described above, 
SLAM algorithms provide the robot with the ability to continually map the 
environment that surrounds it, along with the feature of tracking its position 
regarding its own map, continually; something which is quite demanding in regards 
the real-time process of the resulting data in order to both map and localize. Thus, 
SLAM algorithms provide the robots with essential benefits concerning its 
simultaneous navigation performance, which are difficult to be replaced by other 
simpler methods. 
 

 
2.2 Correlation to the Autonomous Navigation 

In the field of Autonomous Navigation and especially with the use of a Micro Aerial 
Vehicle (MAV), the SLAM algorithms are of the utmost importance for the stability 
and the performance of every drone. According to the above-mentioned, the 
Simultaneous Localization and Mapping is the basic tool that renders the navigation 
of a drone as completely autonomous. It enables not only the drone to know its 
location every moment, but also predicts the drone’s next movement and provides 
supplementary navigation methods with valuable information. Hence, implementing 
a SLAM algorithm into the development of a drone, offers also a significant aid to 
the control system providing valuable feedback in a way of tuning the control 
parameters to their optimum. All in all, the effect of the SLAM algorithms into the 
whole system is directly linked to the control system, since both are sharing the 
same information and both are responsible for the stability and motion of the drone; 
in other words, they are both vital systems for the performance of a micro UAV.  
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3. SLAM Essentials 

3.1 Technical Description of SLAM techniques based on micro UAVs 

Owing to the fact that the Kalman Filter and the Extended Kalman Filter are vital 
methods for the control system, they are commonly integrated into both the control 
system and the navigation. One approach to solve the SLAM problem is to use 
vision sensors. The techniques used for the identification and description of the 
environment that the drone operates, rely on the detection of features extracted 
from the captured images of the drone and differ depending on the variation of the 
features. Specifically, the feature-based SLAM algorithms follow two main steps as 
a procedure of feature extraction, description and setup parameterization so as to 
reach the desired outcome. The first step of the process is the application of the 
feature extraction and description methods, so as to extract sets of features from the 
image and describe them into the system as observations. The second and more 
important step is the estimation of the exact location of the hardware sensor, which 
in most cases of a commercial MAV is a monocular camera, along with the 
geometry of the environment. These estimations are made in function of the first 
step’s observations and the combination of these leads to the final outcome. The 
interim procedure of the estimation is also known as the method of the Inverse 
Depth Parametrization [5]. This particular method solves the essential problem of 
the close distance features that cannot be identified, while using the standard EKF 
framework. In other words, the depth of the initial observed features is parametrized 
to an inverse depth, relative to the camera position. With this method, the features 
can be identified “even up to infinity” depths [5] and it is used exclusively in the 
Monocular SLAM algorithms.  

 

3.2 SLAM Algorithms 

The second half of the SLAM algorithms, in other words the vision part of each 
algorithm, is consisted of the feature extraction and feature description techniques. 
These techniques detect every feature in the drone’s captured images and analyse 
them in sets, following the system’s standards.  

 

Feature Extraction 

The feature extraction methods are the initialisation of the SLAM algorithm. While 
the drone flies around its environment, the monocular camera captures multiple 
images that describe its view; these images are the input of the feature extraction 
algorithms. Due to the diversity of these features, the extraction techniques are 
categorised based on the most common features and they are divided into more 
than one classes. In particular, there are two main categories that differentiate these 
techniques; namely, (1) the edge detectors and (2) the corner detectors.  

The edge detectors are responsible for tracking the edges of an image and 
selecting the most distinguishable of them. The process of such a method begins 
with the application of a Gaussian filter in order to remove the noise of the image. 
The Gaussian filter applies smoothing and filtering into the resolution of the image, 
thereby cleans the image from unnecessary noise. Afterwards, the intensity 
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gradients of the image are analyzed so that the method to focus at certain parts of 
the image. This part of the technique helps improve the speed of the procedure by 
decreasing unnecessary processing time of useless image content, such as large 
non-graduating intensity parts of an image. Finally, after the completion of the above 
steps, a double threshold binarization technique [6] is being applied for 
determining the potential edges, in addition to the detection of the edges with weak 
presence and poor connection with others; these are being suppressed in order not 
to confuse the system. A very effective method is the Canny edge detector [7], 
while methods such as the Deriche edge detector [8], or the differential edge 
detector are improvements of the original Canny method. 

The corner detectors form the second category of the feature extraction 
techniques, correspond to the detection of sharp corners inside an image. These 
techniques analyze the image pixel by pixel and compare each detail of a pixel in 
order to detect the shape of a corner. Specifically, the Moravec corner detection 
[9] method, a very essential technique, compares every pixel of the image with its 
neighbor, so as to spot a difference among their density. The final output of this 
technique contains the variable called “similarity”, which is the sum of the squared 
differences (SSD) among the respective pixels; the smaller this output is, the more 
likely is that the corner is detected. The improvement of the Moravec method, also 
called Harris & Stephens corner detection [9] differs in the way that the algorithm 
estimates the similarity. In particular, the algorithm uses the differential of the 
respective pixels instead of summing the squared differences among themselves, 
while taking into account the direction of the pixel that tend. This differential logic is 
called “autocorrelation” and implements a faster and more consistent way for 
detecting corners. 

 

Feature Description 

After the fundamental section of the feature extraction, follows the feature 
description. This task contains techniques that not only describe the detected 
features into the system, but spot the most important key points of the total. These 
algorithms are based on the Points of Interest – PoI, which are used as means of 
defining and characterizing the features of every detected object in an image. The 
most applied algorithms in this section are: (1) the Histogram of Oriented 
Gradients – HOG [11] method, (2) the Scale-invariant Feature Transform – SIFT 
[12] method and (3) the Speeded Up Robust Features – SURF [13] method.  

The HOG method is one of the most widespread algorithms for object and face 
detection. The basic logic behind this algorithm is based on the separation of the 
image in many small portions, called cells. The figures that are present within the 
image along with their appearance, is described in the system as intensity 
gradients and edge variations. Hence, every cell contains a part of the image, 
defined from the above, in which the summary of the pixels inside the cell forming a 
histogram of intensity gradients. Thus, the final output is described by the total of 
the histograms contained in the image, in which case is called descriptor. 
Moreover, and besides the above basic operation, this method aims to improve the 
quality of the recognition by applying a contrast normalization; in other words, 
estimates the volume of the intensity in a larger area called block. In this way, the 
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estimated value becomes a stabilizer among the diversity of the intensities and it is 
applied to each histogram inside the block. This technique benefits in a way of 
smoothing the illumination and the shadowing. 

On the other hand, the SIFT method uses the PoI technique in order to cope with 
the common problem of the incorrect mapping of features from image to image. In 
particular, this algorithm detects points of interest (key points) from a set of images 
and stores them in a database, so as to constitute the basic data for the comparison 
of the objects. Hence, a new object will be detected when the key points from the 
database coincide with the new features, based on their Euclidean distance; these 
new features are called “good matches” depending on the matching of their 
magnitude, orientation and position. Last but not least, the final output of these 
algorithms consist of clusters of “good matches”, while make use of the Hough 
transform in order to untwist the outliers. 

Finally, the SURF method is an essential improvement of the SIFT algorithm, in a 
way of speed and performance stability. While the above algorithms make use of 
the corner and edge detection methods, SURF uses blob detectors instead. 
Specifically, this method compares the image in terms of density and color 
variations, through mathematical estimations, and uses the “multi-resolution 
Pyramid” [14] technique in order to convert the points of interest into coordinates. 
As a result, a copy of the image is created and with the implementation of the 
Laplacian and Gaussian Pyramid techniques, the new image has reduced 
bandwidth but same size. Hence, the outcome of this method is the application of a 
custom filter, based on the standards of each image and called “scale-space”, in 
which the points of interest do not affect the total feature comparison in regards the 
magnitude. 

The above techniques are applied in combination into the navigation system of a 
micro UAV, due to the complexity and the importunity nature. 

 

4. SLAM Applications in micro UAVs 

4.1 Monocular and Direct SLAM 

The navigation system of a drone is based on its vision sensors in cooperation with 
the SLAM algorithms. However, in the case of the micro unmanned aerial vehicles 
their vision system is usually consisted of one monocular camera, for commercial 
drones, or with the addition of laser beacons, in military applications, for optimal 
tracking. In such case, the problem that a drone equipped with a monocular camera 
has to cope with, is the depth parameterization. In other words, the particular drone 
has to observe the environment in 3 dimensions, adding the depth of the scene into 
the equations of the SLAM algorithm, with the use of a 2-dimensional vision sensor. 
This technique is called Monocular SLAM and its fundamental logic is about the 
tracking of the depth in a scenery with the use of a 2-dimensional camera, and not 
with stereo cameras. Such algorithms are divided in two basic categories: (1) the 
feature-based SLAM, which is described above, and (2) the direct SLAM. The 
difference between them, is that the feature-based algorithms are based on the 
feature extraction and description techniques, while the direct SLAM algorithms skip 
these steps and analyze the entire image pixel per pixel.  
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In particular, the direct SLAM is developed exclusively for drones equipped with 
just a monocular camera, while the exact name of this method is Large-Scale 
Direct Monocular SLAM or LSD-SLAM [15]. In contrast to the feature-based 
methods, this technique uses image-to-image alignment in order to track the exact 
location of the drone. Specifically, the alignment is performed by a coarse-to-fine 
algorithm; this algorithm analyses a small set of data by triangulation and after the 
completion of the each calculation it adds another small set of data, until the error 
between the last triangular result and the total to be within a bandwidth. Moreover, 
this algorithm includes the Huber loss equation, which provides the same benefits 
as the SSD, but with more resilience in the extreme values. Additionally, the depth 
estimation on the environment is performed by the inverse depth parameterization 
with a use of a small number of image sets. This method makes use of the semi-
dense technique in order to create a depth map by the information in the image 
boundaries. Hence, the main difference between the direct SLAM and the common 
feature-based SLAM algorithms is that the particular method is based on a texture 
tracking technique and not on the characteristics of each image.  

 

4.2 PTAM – Parallel Tracking & Mapping 

This particular algorithm is developed for commercial micro UAVs, in order to track 
in real-time the position of the drone in space. Specifically, the Parallel Tracking & 
Mapping – PTAM [16] algorithm is based on the monocular SLAM logic; the 
navigation system tracks the position of the drone in real-time and also creates a 3-
dimensional map of the environment. This method is divided in two main 
procedures: (1) the tracking and (2) the mapping. The tracking process is 
performed by the combination of feature-based algorithms and stereo initialization 
techniques. In particular, the position of the drone is estimated via the triangulation 
of the observations received by the feature extraction and description methods, 
along with stereo initialization techniques; in which the drone is able to observe the 
environment from multiple points of view. In addition, this algorithm makes use of 
the pyramid technique, which divides the captured scenery in multiple layers 
consisted of various video frames. With this process the system is able to track the 
relative position of the drone in real-time and with great stability in terms of blurring 
or fast movements. The mapping process, on the other hand, is highly linked with 
the tracking due to the information exchange between them. This process is 
described by the collection of sets of data, called key frames, which include 
information about the environment. The procedure of the particular collection is 
essentially filtered, in order to achieve stability in the estimation of the errors and 
also to enable the ability of reviewing each frame so as to improve the quality. The 
result of this process is the continuous improvement of the map quality along with 
the position tracking. 

The Picture 1, below, illustrates the practical application of the PTAM algorithm with 
the use of a Parrot AR Drone 2.0 [17], which was developed within the context of 
laboratory application in our teams lab at Piraeus University of Applied Sciences. On 
the left side of the picture, it is indicated the map of the environment, based on the 
key frames received from the tracking process, while on the right side it is illustrated, 
via key points, the essential features detected from the extraction and description 
techniques. This constitutes a legit example of a SLAM algorithm implementation 
into a micro Unmanned Aerial Vehicle. 
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Picture 1: PTAM illustration with the use of the Parrot AR Drone [18] 

 

5. Discussion  

The above illustration summarizes the SLAM algorithm essentials described in the 
particular paper. Specifically, the application developed in our laboratory was focused 
on the indoor autonomous navigation and its main aim was the inspection of a desired 
object. The results of the particular application showed the importance of the SLAM 
algorithm in many ways. One of the most significant factors was the choice of the 
Extended Kalman Filter algorithm, which was an essential element for both the vision 
part and the stability of the drone due to the prediction information. In addition, the 
advanced technique of the PTAM algorithm enabled the drone to track numerous 
features, regardless of the illumination and the shadowing of the scenery, that always 
constituted a sufficient input for the creation of the 3-dimensional map. For instance, 
Picture 1 was captured in a dark environment with the on-board camera of the drone. 
Nevertheless, as it is illustrated, the system had enough information for the initialization 
of the localization and mapping. Moreover, as it is depicted on the right side of the 
Picture 1, the majority of the detected features are consisted by corners and edges. Τhe 
reason is that PTAM makes use of basic and reliable methods for the extraction and 
description of the features, such are the above mentioned techniques. Last but not 
least, Picture 1 demonstrates the efficiency of the depth detection from a monocular 
camera with the use of the Inverse Depth Parametrization method; this is illustrated in 
the left side of the Picture 1, with the perspective view being from above. All in all, 
SLAM algorithms constitute perhaps the most essential element in any drone navigation 
system, due to their direct influence in every part of its performance. 
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