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Abstract

Abstract

This particular project, entitled ”Autonomous Indoor Inspection of Aircraft Wing Panel with

UAV: Image Processing & Localisation”, constitutes a Research and Development applica-

tion concerning an algorithmic analysis and implementation of image processing and precise

localisation methods; which enable the drone to perform efficiently the operation of indoor

autonomous inspection in narrow environment. In particular, the application of this thesis is

focussed more on the precise positioning of the drone around a wing panel and the detection of

potential flaws with the use of Ultraviolet light. The application is to guide precisely the drone

around a wing panel, which is in the process stage of a Non-Destructive Testing, and inspect

the panel for potential defections. Following that, a post-processing automatic detection and

classification of the wing panel’s defects is performed with advanced image-processing tech-

niques. The experimental application was carried out at Cranfield University, in cooperation

with the Airbus Group, as part of Autonomous Vehicle Dynamics and Control (AVDC) MSc

Course during the academic year 2016 - 2017.

Keywords: UAV, Inspection, Non-Destructive Testing, Precise Positioning, Drones, Air-

craft Wing Panel, Image Processing, Ultraviolet light.
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Chapter 1

Introduction

With the advent and the sharp advance of the modern technology, the Unmanned Aerial Vehi-

cles (UAVs) have taken a significant position in regard to several applications; either military

or industrial, civil. Apart from advanced military applications, civil operations constitute an

also important field of research. Applications such as industrial surveillance, precise agricul-

ture, fire-fighting or remote sensing and monitoring, are only the most common operations

performed by various UAV types [12]. However, the requirements, along with the difficulties of

these operations, are of utmost important to be researched. In particular, the operating environ-

ment of the UAV poses several challenges differing from operation to operation. The unknown

environment of an outdoor area constitutes a challenge that needs to be coped with continuous

update of the UAV’s path. Collision avoidance algorithms are also a part of the aforementioned

unknown environment challenge, that have to be contained in the UAV’s system. For indoor

environments, the GPS data are unavailable; a challenge that needs be to dealt with, in order to

achieve optimum control of the position of the drone. Options such as laser sensors or indoor

Real-Time Localisation System provide the drone’s system with valuable data that assist in the

localisation.

One of the most essential requirements concerning the manufacturing of an aircraft, is the

built quality of each of the equipped parts. With the view of achieving the optimum safety qual-

ity in regard to an aircraft build, several tests specialised on every different part of the aircraft,

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Drone used by EasyJet for Aircraft Damage Inspection [1]

are performed during the manufacturing process. Namely, one the important processes during

the manufacturing of an aircraft wing, is called Penetrant Flow Detection (PFD). Shortly, the

PFD provides assurance that the wing panel is defection free prior to the step of the anodis-

ing and the painting. This work, focusses on the research and development of an innovative

method that replaces the ongoing technique with an autonomous operation with the use of a

UAV. Specifically, in this thesis the subject to be researched and analysed is oriented on the pre-

cise indoor positioning of a drone and the autonomous navigation of the UAV around an Airbus

wing panel; with the view of inspecting it to detect potential defections. The benefits that this

application provides are important for the advance of the manufacturing. In particular, it sig-

nificantly reduces the amount of time needed for inspecting the wing panel by a technician and

also increases the accuracy of the inspection, while it provides a 3-D model for post-processing

evaluation.

This section states the aims and objectives of this individual research work, and introduces

the literature review regarding prior research of suitable algorithms and hardware implementa-

tions.
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1.1 Aims and Objectives

The aim of this individual research project is oriented around the research of potential algo-

rithms that enable indoor navigation and mapping for inspecting an under-construction aircraft

wing; the essential feature of focus, is the precision in positioning. In other words, the target

of this research is to develop a drone application, in regard to the hardware configuration and

software implementation; with the view of inspecting an aircraft wing panel using the method

of Penetrant Flaw Detection (PFD), to detect potential flaws before the panel’s painting and

anodising process. The aim of the literature review, which follows in the next section, is to state

suitable researched techniques concerning precise positioning in indoor environments, com-

puter vision methods regarding feature detection and extraction under UV light, and potential

path-planning methods with the view of developing an efficient way-point navigation. The

objectives of this research project are listed as follows:

• Evaluate the potential risks of the entire process, focussing on the safety of the wing,

and the demands of environment, with respect to the hardware configuration of the used

UAVs.

• Assess the possible difficulties that need to be coped with, concerning the indoor posi-

tioning, visual structure detection, among others stated in the following sections.

• Simulate the Penetrant Flow Detection process in laboratory environment, in order to

perform experiments with the UAV.

• Study and implement suitable algorithms, concerning high accuracy in localisation and

computer vision and image recognition techniques, focussed on the feature detection and

extraction for identifying and mapping the environment of the UAV.

• Simulate the autonomous navigation application in 3-D software environment.

• Perform a flight demonstration with the use of the DJI Matrice 100 UAV, with the view

of a complete autonomous inspection of an Airbus wing panel.
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• Discuss the feasibility of the project with respect to the resulting UAV performance in

tight indoor environment along with the high risk assessment of the mission.



Chapter 2

Literature Review

In this chapter, the software solutions concerning the computer vision and image analysis for

inspection of structures, such as an aircraft wing panel, under UV light are to be described.

Additionally, localisation techniques and hardware options, based on prior researches, are to be

stated and explained; focussing more on GPS-denied methods.

2.1 Localisation - Theoretical Implementations & Sensors

This sub-section concerns the description of indoor localisation algorithms along with relevant

used sensors. Specifically, suitable sensors for indoor navigation are bound to be illustrated,

while positioning algorithms are to be described.

The structures of the UAVs generally vary on each other, in several aspects. However, when

the drone has to perform an indoor operation, the requirements to meet are of utmost importance

and very strict. The UAV has to feature lightweight characteristics with the view of advanced

manoeuvrability; the lightweight feature along with powerful motors and sharp processor, con-

stitutes an optimal combination for a UAV precise controllability. However, depending on the

operation that the UAV has to complete, the sensors and techniques, regarding the positioning

of the drone, changing on focus. In this particular application, in which the drone has to per-

form an indoor inspection through a narrow environment, namely the wing panel inspection

5
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room, the most striking requirement consists the accurate GPS-denied localisation of the drone.

Several researches have been carried out, in order to conclude on optimum solutions; various

papers contain solutions or, in other words, localisation implementations of algorithms along

with suitable indoor positioning sensors.

Apart from the fact that an indoor inspection demands high levels of manoeuvrability, hence,

lightweight structures with optimum sizes, requirements such as sensory precision or accuracy

in navigation are of utmost importance. To achieve this general requirements, the combination

of sensors and navigation algorithms must collaborate to the optimum. From the view of the

hardware of a drone, the requirement that must be met is the accuracy of the sensors. The

bias created by the sensors constitutes a significant factor that may affect the performance of

the drone; which also contains the risk of collision. Additionally, the indoor environment is a

GPS-denied place that leads the approach of the application towards other localisation solutions.

2.1.1 Vision-Based Positioning - Monocular Camera

Vision-based localisation is one of the most common approaches in indoor and outdoor environ-

ments. At present, due to the quality of image recorded by modern cameras, several applications

have been relied on vision-based positioning. It is worth-mentioning that apart from numerous

benefits that this technique provides, the most essential drawback that has to be coped with, is

the low levels of indoor lighting which affects the quality of the results. Fortunately, various

sub-solutions concerning the issue of lighting in machine vision, have been proposed in several

academic papers. For instance, an installation of LEDs close to the drone’s camera, consti-

tutes a constant light projection that the drone can process via image-processing algorithms. An

illustration of similar techniques is presented by Daryl Martin [13], while a deeper look into

this issue is described in the Chapter 3 of the Handbook of Machine Vision [14]. Apart from

a hardware modification, image processing techniques, such as the simple gamma correction

filter, can improve the visual factor of the image or video and enable the processing to better

results. A camera-based positioning technique has been proposed and implemented to a similar

to this application, concerning Inspection of Industrial Facilities [7]. In the aforementioned
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application, the UAV performs inspections in enclosed industrial environments with the use of

monocular cameras. Specifically, the drone uses a pair of monocular cameras arranged in a

classical stereo configuration, which provide the system with essential feature-based informa-

tion concerning the localisation and mapping process. It is worth noting that the cameras are

equipped with exposure synchronous LED flash, to eliminate the factor of low level lightning.

2.1.1.1 Monocular Camera along with Laser Sensor

A combination of visual-based navigation and laser range finder is also a possible solution for

indoor navigation. This particular solution is described in the paper, entitled Autonomous In-

door Hovering with a Quadrotor et al. [G. Angeletti] [15], which illustrates a performance

of a monocular camera, as the vision system, and a laser range finder sensor with the view of

detecting the surrounding objects. Similar to this project’s technique, is described in the thesis

report, entitled Autonomous Flight in Unstructured and Unknown Indoor Environments et al.

[A. Bachrach] [16]. In particular, the thesis follows the methods of a standalone Laser configu-

ration, a pair of monochrome USB cameras, as well as the combination of the two options. The

optimum solution, is given by the combination of the two sensors due to the fact that in over-

comes standalone issues. Problem such as shadowing or illumination of the camera is coped

with the laser beacon, while issues such as incorrect measurements from inaccurate laser beams

are dealt with vision-based featured extraction and description methods. Nevertheless, a com-

parison of both sensors depicts that laser sensor maintains essential advantages in the accuracy

of the measurements along with the corresponding propagation.
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Sensor - Approach Computation Time Bandwidth

Laser Sensor (Scan-Matching) 5 msec/measurement 170 KB/sec

Monocular Camera (Visual Odometry) 65 msec/measurement 1300 KB/sec

Table 2.1: Comparison between laser and vision requirements and bandwidth

The table above, estimated in the thesis report [17], presents the transmission time of both

sensors. The laser data requires less propagation time in contrast to the camera. This, results

in reduced time of the scan-matching algorithm and the process of incoming data; which leads

to less delay in the position estimates. This delay is of utmost importance for the stability of

the drone. However, the visual odometry provides a critical benefit, on contrary to the laser

scan-matching, of estimating all 6 degrees of freedom.

2.1.2 Real Time Location System - RTLS

Positioning accuracy to an indoor environment can be achieved by a combination of multiple

sensors mounted in the perimeter of the environment. In other words, the Real-Time Loca-

tion System (RTLS) uses technology of Radio Frequency (RF), or even optical (infrared) or

acoustic (ultrasound) media, in order to communicate with every sensor and, hence, create a

local positioning system. The principle of operation of the RTLS, states that several anchor

sensors are mounted to the corners of the indoor environment, while a tag sensor is equipped

on-board the desired vehicle that needs to be positioned. The tag sensor, which is mounted

to the object-to-be-located, radiates signals, called beacons, towards the indoor environment.

These beacons are received by the wall-mounted reader sensors, calculating the relative dis-

tance between the anchor and the tag [18]. Furthermore, each of these readers (called anchors)

sends the distance information to the main processor of the system, in order to enable it cal-

culate the relative coordinates of the tag based on the anchors. However, with respect to the

variety of the manufacturers, every RTLS hardware differs from each other; the estimation of

the relative coordinates may be performed from the tag to the anchor, in terms of the position
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of the processor. The figure 5.1 illustrates the KIO RTLS, manufactured by Eliko Tehnoloogia

[2], which contains 4 anchors and 1 tag. The tag is connect via serial USB cable to the ground

processor of the system, while it sends all the data for the estimation of the relative coordinate

system. This particular system of sensors is being described in detail in the next chapter.

The technique used by KIO sensor for estimating the relative distance of the tag, is called

Time-of-Flight (ToF) or Time-of-Arrival (ToA). The operating principle, states that the relative

distance is estimated through the travel time of the radio signal between the receiver and trans-

mitter sensors. Similarly, other possible distance measurement techniques are 1) the Angle of

Arrival (AoA), 2) the Time Difference of Arrival (TDoA) and 3) the Received Signal Strength

(RSS) [19]. These methods are divided in two main categories, namely one-way and two-way

ranging methods [20].

Figure 2.1: Real-Time Location System - KIO Evaluation Kit [2]

The one-way ranging method is a simple technique in terms of implementation, however, the
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provided accuracy fluctuates at low levels. In particular, this category of ranging estimation uses

the strength of the received signal with the view of estimating the distance between the receiver

and transmitter. The Received Signal Strength method (RSS) belongs to this category of ranging

methods. On the other hand, the two-way ranging method uses the radio technology in order to

estimate the delay of two transmitted signals. By way of explanation, theses techniques use the

delay that naturally occur during a signal broadcast in order to determine the range between the

two stations; namely, the reader (anchor) and the tag. The calculation of the range is performed

by the propagation delay; focussed on the acknowledgements of each station, the calculation

algorithm takes as inputs the acknowledgement of the returned signal, which contains the signal

propagation delay and the processing delay, and use these parameters to estimate the range. The

final stage of these algorithms, after the range estimation, is the transmission of a verification

signal which contains the range of these station along with an average value. A characteristic

algorithm that uses a two-way ranging estimation is the Time Difference of Arrival (TDoA).

In particular, it estimates the time difference between two nodes, while it uses this information

as input to calculate the location of the sensor. At first, a time-synchronised broadcast towards

the readers provides the tag with the information of the ranging. Then, the processor of the

system calculates the position of the tag, with respect to the converted received distance between

the readers and the tag, using the hyperbola curve. As follows, a simple illustration of both

techniques provides a describing image of them [3].

Figure 2.2: Operating Principle of One-Way and Two-Way Ranging Methods [3]
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2.1.3 Ultra-Wideband Positioning

The Ultra-Wideband is a radio technology that provides a system with signal propagation, as

similarly mentioned in the previous sub-section 2.1.2. However, the robustness of the signal

communication among the sensors along with the improved accuracy of the distance estima-

tions, renders this radio technology as worth-describing.

As stated in the thesis [Rainer Mautz] [21], the significant feature that makes the Ultra-

Wideband (UWB) stand out from the other radio frequency technologies, is the large bandwidth

that maintains; which is translated into an essentially improved resolution in time, and as a

result, in range. This range can be estimated by the ratio of the speed of the wave front (v)

related to the bandwidth (b).

ratio =
v

2b
(2.1)

Furthermore, the UWB radio technology includes the techniques of two-way ranging, described

above, such as the Time of Arrival (ToA) and the Time Difference of Arrival (TDoA). These

techniques rely on time measurements; thus, the accuracy of the measurements in every mis-

sion maintains significant factor for the integrity of the results. Therefore, the following three

categories of frequency bands specify the different uses of this radio technology. In particular,

the Continuous Waves enable the precision on the ranging measurements, still, this technol-

ogy demands large antennas for the broadcast of the signal. This requirement is translated to an

incapability of using this technology to small devices; the wider the frequency range, the larger

the physical size of the antenna. On contrary, the UWB Impulse Radio technology provides

even more robustness of the signal transmission and fast distance measurements. The UWB-IR

uses ultra-short pulses (duration of nanoseconds) in order to transmit the data, which provides

better overall resolution of the information; due to the fact that it is protected against the inter-

ference of the signal from multipath broadcast. One more advantage of this technology, is the

low power consumption due to less energy demand. An implementation regarding a localisation

of an industrial robot is described by Segura et al. [22]. Last but not least, the Pseudo Noise

Modulation technology is based on Maximum Length Sequences, or M-sequences, which are
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random binary sequences with short duration. The advantage of this technology is the small

sizes of antennas that they use; an appealing feature for the mobile and Micro Aerial Vehicles

(MAVs) companies. However, the large processing demand for the estimation of the ranging,

consists an essential drawback that needs to be improved.

Concerning the localisation implementations using the UWB technology, the methods are

divided in Passive UWB Localisation, which includes an omnidirectional emitter antenna and

multiple listener antennas, UWB Virtual Anchors, which contains a physical transmitter and

uses the walls as virtual anchors to receive delays of the signals, and UWB Direct Ranging,

which are based on the techniques of ToA and TDoA. The figure 2.3 illustrates a UWB indoor

positioning system, similar to the one chosen for this project implementation.

Figure 2.3: UWB Passive Positioning System - 4 Readers and 1 Tag [4]
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2.1.4 Supporting Sensors

The sub-section of the supporting sensors is related to the hardware that provides the au-

tonomous vehicle with supporting data, yet sometimes necessary. Sensors such as the Iner-

tial Navigation System (INS), the Ultrasonic sensor or an Altimeter are mandatory sensors that

provide the drone with essential information; these are to be stated as follows.

2.1.4.1 Inertial Navigation System (INS)

The Inertial Navigation System is a system every drone contains, due to the simplicity regarding

the positioning that it provides. The algorithm of INS uses the data acquired from the Inertial

Measurement Unit (IMU) in order to estimate the position of the drone based on the movement

itself. Due to the shift of the IMU data, usually the INS fuses these information along with

inputs from other complementary sensors with the view of calculating more accurate position.

The particular information provided by the INS is an estimation of the drone’s position, velocity

and orientation towards the operating environment. At this point, it is worth-noting that an

initial belief of the drone’s state is a requirement of utmost importance for the INS to maintain

less bias in its estimations. Following that an initial position is provided, the Dead Reckoning

method is being applied in order to calculate the position of the drone based on the velocity and

movements that the vehicle performed. This technique does not require external information;

a feature that characterises this position estimator as a robust and rapid localisation system. In

the article of Bong-Su Cho et al. [23], the INS technique and the Dead Reckoning approach is

being used in order to estimate the position of mobile robots, yet with the addition of a Kalman

Filter for improving the orientation and velocity estimation.

2.1.4.2 Altitude Estimation Sensor

The solution concerning the vertical localisation of the drone, that is the altitude ranging, con-

stitutes the altimeter sensor in combination with ultrasonic sensor; a dominant option due to

the accuracy and robustness that this fusion provides. The aforementioned paper et al. [G.
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Angeletti] [15], mentions the technique of sonar-based altitude control, in which the ultrasonic

sensor is equipped at the ceiling of the drone in order to avoid potential obstacles that may

affect the output of the drone’s real height. Additionally, in the publication of G. Szafranski

et al. [24], the given solution describes the option of using the combination of an Altimeter

along with an Ultrasonic sensor for the estimation of the vehicle’s altitude. In particular, the

Altimeter includes a barometric pressure sensor, connected to a micro-controller that converts

the analogue measurements to digital signal. In addition to this, an ultrasonic proximity finder

estimates the altitude of the vehicle between 0 and 7 meters. Specifically, it uses the transmitted

sound waves in order to estimate the distance based on the evaluated echo. The main advantage

of the proximity sensor, in comparison to the altimeter, is the operation in any environmental

conditions; there is no effect atmospheric effect against the sensor. However, the range limita-

tion along with the restricted size of the detected objects, consists an essential drawback that

demands careful placement of the sensors on-board the vehicle.

2.1.5 Positioning using Theoretical Approaches

The computer vision algorithms, stated in the next section, conduce to the overall positioning

of the drone when combined with the appropriate localisation sensors. In other words, the

analysis of the drone’s vision constitutes a fundamental step for the extraction of the position

data. Hence, the SLAM algorithms along with their image processing methods, are of utmost

importance for the localisation of the drone; while the precision of the positioning is based

on the accuracy of the methods along with the gathered data. For instance, the application of

indoor navigation with the use of a Micro Aerial Vehicle (MAV) et al. [D. Sobers] [5], uses an

algorithm called ”CoreSLAM” as the basic tool for the precise localisation and mapping. The

following figure 2.4 illustrates the resulting map of the above mentioned application, generated

in simulation environment with the use of a laser sensor.
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Figure 2.4: Laser-based map in simulation environment generated from CoreSLAM [5]

Following the method of laser or optical sensors, different approaches use wireless indoor

communication for the propagation of the position data based on known map. These approaches

are categorised into long distance, middle distance and short distance wireless technology. The

long distance technology contains methods such as FM signal propagation and GSM/CDMA.

The middle distance wireless technology includes the WiFi technology along with the ZigBee.

Last but not least, the short distance technology is about signal propagation via Bluetooth,

Ultra-Wide Band (UWB) and Radio Frequency Identification (RFID). These technologies are

used widely in the UAV indoor navigation, with the view of improving or even optimising the

localisation of the drone. The technical report et al. [Junjie Liu] [25], summarises and describes

these techniques in detail.

Furthermore, the most common theoretical techniques used for the estimation of the position

are the proximity and triangulation or trilateration. In particular, the proximity method is based

on a known location, while the drone tries to estimate or predict its position in regards to it. For
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a wireless localisation approach, the UAV can estimate its position based on the position of the

access point. Unfortunately, due to its high variance this technique is no longer implemented in

UAV developments. On the other hand, the triangulation method uses geometric data to obtain

the location of the drone. Similarly, the trilateration method uses the euclidean distances among

several points in order to define the distance from the intersection point; the difference from the

triangulation technique is that it does not take involve the measurements of angle. Yet, the

position of the drone is estimated either relatively to the distance of a fixed point measurement,

or by the received signal angle [25]. Finally, the triangulation method is divided in three sub-

categories, namely, time-based triangulation, angle-based and RSS-based.

Figure 2.5: Triangulation technique using (a) distance and (b) angle

The combination of several wireless techniques for the improvement of the position accu-

racy, constitutes an advance and robust approach. In the publication regarding the integration

of RFID and WLAN for indoor positioning, et al. [A. Papapostolou] [26], the WiFi is used to

guide the reader and elimination any potential RFID issue, while the RFID is used to foresee the

following mobile node and increase the performance of the handover latency among the mobile

nodes [25].
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2.2 Computer Vision - Positioning & Image Analysis

The inspection techniques vary among several non-destructive testing (NDT) methods, such as

visual inspection, radar or LIDAR, UV and thermography. Hence, based on the infrastructure

to be inspected, the method differs in terms of the equipment, that is to be used, along with the

image processing technique [27]. However, the differences among the aforementioned sensors

- techniques are essential. In particular, the optical and infrared option provide only 2-D data,

while the radar and LIDAR sensors offer the significant parameter of depth information. The

absence of depth in the optical and infrared options, assuming that the camera is monocular and

not stereo, is coped with the method of Inverse Depth Parametrisation [28]. This method is ex-

tensively used in the Monocular Simultaneous Localisation and Mapping (SLAM) algorithms,

in which it solves the essential problem of depth and the inaccurate identification of close dis-

tance features in the captured image. This section, describes the techniques used in Computer

Vision concerning the localisation based on image analysis, in addition to filters and detector

algorithms that provide automation in defect detection to this project.

2.2.1 Image Analysis Techniques

A large amount of automations regarding industrial processes, demand the important task of

image analysis. Image processing is the procedure of analysing an image, a series of images

or even a video, with the view of acquiring either a processed image or a set of characteristics

and key parameters related to the particular project. The software package, may contain sev-

eral implementations of algorithms regarding the detection of key points in the image, such as

edges or corners, detection of colour variations or combinations of them. Several algorithms,

either digital filters or intelligent detectors, have been developed with the view of optimising

the automation in the analysis.
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2.2.1.1 Digital Filters

The category of digital filters constitutes a very wide field of interest; thence, this sub-section

focusses more on image editing with the view of the resolution improvement in concern of the

project of automatic defect detection. The improvement of the resolution includes several fac-

tors, or in other words, various filters that react on the image’s output. The main categories that

someone may divide these filters are related to the operation of the analysis. Noise reduction

filters consist the most useful and essential filter category; the filters significantly reduce the

noise of an image or video, thus, improve the quality of the input information, as well as the

output. However, the risk of removing significant features, because of wrong justification, is

a drawback that always sets the optimum in higher level. In particular, in the publication of

[R. Peters] et al. [29], a Morphological Image Cleaning (MIC) algorithm is being described

as ”careful” cleaner. Specifically, this algorithm preserves the small and thin features during

the implementation of noise reduction filters. It uses the calculations of residuals between the

original and the morphologically processed image, while it analyses regions of the image and

discards these that it estimates as noisy regions. After the justification of the residuals, the out-

put of the algorithm is a combination of the processed residual images, which is a smoothed

image with carefully reduced noise. Furthermore, simpler filter that provides noise reduction as

well, is the Median filter; a technique of digital filtering that processes the image’s signal entry

by entry. Specifically, the statistic-based filter processes the signal of the image and replaces

every noisy entry of the signal with the median of the neighbouring entries [30]. This mask

contains the pixels of the image, which are ranked with respect to the gray level variations. The

Media Filter is widely known for its noise reduction performance, while it is worth-mentioning

that it is a non-linear filter, hence, complex to mathematically described it.

On the other hand, the blur in an image consists an important noisy feature that demands

different approach from the aforementioned filters. One of the most widely used Image Cor-

rection Filters is the Gaussian filter or Gaussian smoothing technique. Before describing the

filter, it is of utmost importance the understanding of the Gaussian noise. This noise is created
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by the acquisition of the sensors’ estimations; e.g. poor illumination or shadowing. Gaussian

noise is a statistical noise, which maintains a Probability Density Function (PDF) equal to that

of the normal distribution, or Gaussian distribution. In order to reduce the Gaussian noise, a

spatial filter which contains noise reduction filters has to be applied. Usually, a spatial filter

includes a noise reduction filter, such as the Median Filter, and an image smoother. The draw-

back of this implementation is the processing of the image with these filters. The Gaussian

smoothing operation, which aims on decreasing the noise of the image, reduces also the quality

of image result. Hence, the implementation of a spatial filter, included the noise reduction filter

and the Gaussian filter, demands an application of image resolution improvement algorithm.

2.2.2 Simultaneous Localisation and Mapping (SLAM) -

Image Processing

Following the reference of the SLAM algorithms, several application of drones development

solve the computational problem of SLAM with fast processing algorithms. Regarding the

image processing of the SLAM algorithms, the general procedure maintains important steps;

namely, the feature extraction and feature description methods. These methods are oriented

more in the optical approach of the SLAM. In brief, the feature extraction algorithms analyse

the captured or recorded image of the drone based on techniques that focus on various features;

namely, edge detectors and corner detectors. The edge detectors are used in order to detect

sharp edges from the image that is divided in intensity gradients. The dominant step for the

detection is the application of the double threshold binarization technique [31]. Applications

that use the edge detectors are oriented more in the precise inspection, while this method is

useful to recognise the boundaries or details of an infrastructure; namely, a wind turbine rotor

blade.
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Figure 2.6: Edge detection images (a) Canny method with default threshold (b) Canny method
with optimal threshold

The automatic detection of surface cracks in wind turbine rotor blades application et al. [H.

Zhang] [32] makes use of the edge detection algorithms via support of the MATLAB function

edge(). This function uses several edge detectors, such as the Canny edge detector [33]. Figure

2.6 illustrates the results of the edge detector algorithm in the aforementioned application.

The feature description algorithms are the following step of the feature extraction. The

methods used for the description of the features, are of utmost importance for the system to

input the features. This techniques not only describe the detected features into the system, but

spot the most important key points on the total data. The dominant feature descriptors are the

Histogram of Oriented Gradients (HOG) method, the Scale-invariant Feature Transform

(SIFT) method and the Speeded Up Robust Features (SURF) method. In the publication et

al. [I. Mondragon] [34], the application uses as dominant method the SIFT approach along

with several others, in order to perform an experiment among them. It tracks several objects,

including a building’s windows, with the view of detecting and evaluating the matching of the

keypoints. It is worth mentioning that SIFT method is used widely in the field of inspection,

due to the use of the Hough line transform algorithm that enables the detection of straight line

features, such as the frame of a wind turbine rotor blade [6].
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Figure 2.7: Hough Line Transform implemented to detect the rotation of the wind turbine rotor
blades [6].

2.2.3 Scan Matching Techniques

Last but not least, the scan matching techniques are commonly used with the equipment of a

laser or optical sensor and provide relative position information. These essential methods are

divided in the categories of feature-to-feature (F2F), point-to-point (P2P) or even feature-to-

point (F2P). The aforementioned techniques are based on the analysis of the image in features or

points, such as corners, edges, lines or simple points. The main difference between the features

and the points is that features are more accurate, but more difficult to extract them from the

image, while points can be easily extracted but also contain lower information quality. Hence,

an F2F (feature to feature) method scans the captured image of the environment and matches

the features of the first image with the features of the next image. In contrast, a P2P (point

to point) method uses the Iterative Closest Point (ICP) [35] technique in order to match each

initial point with the closest final belief point. The outcome of these methods is the estimation

of the relative position of the drone on the map. The publication in Sensors journal et al. [J.

Tang] [36], uses the P2P scan matching method with the view of the indoor positioning of an

Unmanned Ground Vehicle (UGV), equipped with laser sensor.
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2.3 Platform Advanced Solutions

Based on the special demands of the project, this sub-section contains a brief description of

platform solutions suitable for these kind of narrow operations. In particular, two platforms,

namely a Collision-Tolerant UAV and a Spherical UAV are to be described as follows.

2.3.1 Multi-rotors with Collision-Tolerant Equipment

The most common approach of an indoor inspection, is by using multi-rotors, such as quadrotor

or hexarotor, equipped with fail-safe frame around its propellers. This frame, constitutes an

essential part that enables the drone to perform collision-tolerant missions. The aforementioned

project from ETH Zurich et al. [J. Nikolic] [7], uses a quadrotor equipped with a fail-safe

frame, which enables the drone to perform effectively indoor inspection of industrial facilities.

In particular, Figure 2.8 illustrates the drone configuration that this research has used, which

performs inspection inside a boiler.

Figure 2.8: Prototype UAV used for inspection in a boiler [7]

A commercial yet effective solution is described in the paper, entitled Indoor Autonomous

Navigation of Low-Cost MAVs using Landmarks and 3D Perception et al. [L. Apvrille] [37],

which illustrates the techniques of navigation via landmarks and 3D perception with the use of

a Micro Aerial Vehicle (MAV) for indoor navigation. The commercial open-source UAV used

in this research is call Parrot AR Drone [38] and constitutes a lightweight, manoeuvrable drone

focussed on indoor navigation. However, due to its low cost, the performance of the processor

can not support computational demanding operations, such as reliable precise positioning; yet,

the hardware of the drone is not open-source, hence, the it does not support laser positioning.
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2.3.2 Spherical Drone - Advanced Solution

The shape of an omnicopter is similar to a ball, which contains the vital parts of the drone. It

benefits from the normal drones in the aspect of safety, due to the barriers that surround the

UAV, and in the high levels of manoeuvrability derived from the multi-directional movement

capabilities. It constitutes an optimal configuration for precise indoor inspection, due to its high

levels of safety; it is a collision-tolerant UAV that prevents any potential damage towards the

inspecting subject. The company Flyability SA. [8] produces an innovative UAV in the shape of

an omnicopter, called Elios. The Figure 2.9 illustrates the structure of the Elios drone, while the

specifications state that it is equipped with a live video feedback module and a payload capable

of lifting an HD camera along with a thermal imagery sensor. With respect to the structure, the

Elios UAV is capable of performing precision indoor operations, without the risk of damaging

the under-inspection object during a possible contact or collision.

Figure 2.9: Elios - Collision-Tolerant Aerial Vehicle [8]



Chapter 3

Non-Destructive Testing - Penetrant

Flow Detection

This chapter concerns the explanation of the Non-Destructive Testing (NDT), focussed more on

the Penetrant Flow Detection (PFD) method. Specifically, this section describes the meaning of

the NDT, while explains the method of Penetrant Flow Detection; the fully automated operation

of this method is the dominant aim of this project.

3.1 Non-Destructive Testing - Theory

The Non-Destructive Testing (NDT) is the procedure of testing, evaluating and inspecting a

material, component or structure with the dominant feature of not destroying it. In other words,

after the process of the NDT the material or component can still be used. On the other hand,

the destructive techniques are used in order to determine the physical properties of the material,

such as the tolerance, ultimate tensile strength and fatigue strength, among others.

At present, the NDT is widely used in the industry of manufacturing with the view of opti-

mising the quality of the process. The NDT improves the reliability of the product along with

the integrity, while it lowers the overall production costs and provides the benefit of controlling

the manufacturing process. It ensures the safety of the product by evaluating several manufac-

24
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turing stages; a fully quality controllable procedure without wasting products for inspecting and

evaluating them.

The NDT method vary among the process of testing and evaluation. In particular, based

on the equipment used for the testing or the penetrant material, the NDT method maintains a

similar name. Some of the most common Non-Destructive Testing techniques are listed below:

• Radiographic Testing (RT)

• Ultrasonic Testing (UT)

• Electromagnetic Testing (ET)

• Liquid Penetrant Testing (PT)

• Laser Testing Methods (LT)

• Magnetic Particle Testing (MT)

• Visual Testing (VT)

• Thermal/Infrared Testing (IR)

• Vibration Analysis (VA)

Figure 3.1: Penetrant Testing on Wing Panel: Inspection Stage
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As it is aforementioned, each of the techniques holds a characteristic name with respect to

the method of inspection or evaluation. For instance, the Thermal/Infrared testing, or infrared

thermography, uses infrared radiation to map surface temperatures by receiving the heat radia-

tion of the objects and environment. The equipment required for this technique is dominantly

a thermal camera, which is commonly called ”infrared camera”. Despite the various imple-

mentations among the techniques, the main purpose of all these is to locate and characterise a

material’s or component’s condition along with its potential flaws; with the view of deterring

any future chance of malfunction to the overall system. This evaluation process has essential

impact to the safety of the overall product; a small flaw in the manufacturing process of a wing

panel, may lead to a crack on the wing and, as a result, to an aeroplane’s crash. Hence, the sig-

nificance of the Non-Destructive Testing maintains exponential trend with respect to the safety

requirements of the product.

3.2 Penetrant Testing - Theory

This Individual Research Project focuses on the NDT method of Penetrant Testing. This tech-

nique is applied by Airbus Group on wing panels, prior to the stage of anodising and painting.

The aim of this testing is to detect potential defects or cracks on the under-manufacturing panel,

before the stages of assemble.

The Penetrant Testing method makes use of a low viscosity penetrant material; the funda-

mental principle is when the component is coated with this material, which contains a visible

or fluorescent dye. As soon as the penetrant solution has been applied to the component, it

penetrates into the defects leaving an excessive portion on the surface. The excess penetrant

has to be removed from the surface of the component, in order to reveal only the potential de-

fects. Thence, the penetrant is trapped into the variations of the surface, revealing a defection

that might be a significant flaw in the manufacturing of the component. The inspection process,

after the penetrant application stage, varies between the two penetrant material categories. In

other words, the penetrant might be ”visible”, which allows the inspection under normal light, or
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fluorescent material, which requires ”black” light for the inspection stage. The process that this

project focus on is under ”black” light, specifically ultraviolet light, with the use of fluorescent

penetrant material.

The stages of the fluorescent penetrant testing are listed as follows:

• Pre-Cleaning

• Application of Penetrant

• Removal of Excess Penetrant

• Application of Developer

• Inspection

• Post-Cleaning

At this point, it is worth-mentioning some key details of the testing, while an extended descrip-

tion of the procedure will be stated in the next sections. First and foremost, the surface should

have been carefully cleaned prior to the testing, with the view of eliminating any chances of

foreign materials or liquids to block the penetrant from entering the voids or fissures of the

component. Similarly, the excess penetrant removal has to carefully performed, in order not to

clear away penetrant from any void or fissure; in any other case, the procedure of this testing has

to be repeated. Additionally, a dwell time between the applications of materials are of utmost

importance for the reason of enabling the material to be applied efficiently on the surface of the

product.

Figure 3.2: Fluorescent Penetrant Testing Procedure [9]

The excess penetrant removal method vary among three different techniques, which are

based on the used penetrant: (1) with Solvent Penetrant, (2) with Water-Washable penetrant and
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(3) with Post-Emulsification. The solvent solution is usually painted or brushed on the surface

of the product, while after the dwell time the solvent is removed with a cloth damped with

penetrant cleaner. Regarding the water-washable solution, the product has to be placed into a

rinse station after the penetrant dwell time, in order to be cleaned from the excess penetrant with

the use of a course water spray. This method is the most common cleaning technique, which

provides fast and efficient results. The last category is a combination of a cleaner application

along with the water-washable technique. In particular, post-emulsifiable penetrant is applied

to the surface for a prescribed period of time, also called emulsifier dwell time, to remove the

excess penetrant. Emulsifiers can be lipophilic (oil-based) or hydrophilic (water-based). After

the emulsifier dwell time, the product is subjected to water wash in order to clean both the

excess penetrant and the emulsifier.

3.3 Penetrant Testing - Airbus Implementation

As it aforementioned, the process of fluorescent penetrant testing is used by Airbus Group

in order to evaluate the build quality of the wing panels, prior to the stage of painting and

anodising. The procedure that Airbus follows is the general process mentioned above, while it

makes use of advanced systems for better results. Below, the Airbus-followed process will be

described with the support of a process map and a block diagram as well.



CHAPTER 3. NON-DESTRUCTIVE TESTING - PENETRANT FLOW DETECTION 29

Figure 3.3: Block Diagram of the Penetrant Testing

The initial step of the procedure is of utmost importance; the pre-cleaning stage, provides

a clean surface ready to be tested, while it reduces, or even eliminates, the chances of other

foreign materials to affect the result of the testing. The surface should be free from oil, grease,

water or other materials in order to proceed to the next step of the testing. The material used for

the cleaning step, is a solvent material, namely ARDROX 9PR5, which is applied to the surface

of the panel by spraying, prior to the testing procedure. Following the pre-cleaning step, the

drying process is responsible for removing any humidity from the product. The procedure is

applied with the use of a special-structured oven that performs air circulation, while the time of

drying is essentially restricted above 15 minutes and in environmental temperature. After the

drying stage, the application of the penetrant step is being performed. In particular, the panel
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is placed in a tank full of penetrant, and with the use of the immersion technique it is applied on

the surface of the product. The dwell time is an essential step of the testing, because it provides

the penetrant with time to be drawn or seep into a defect. The penetrant dwell time, with respect

to the NDT Resource Centre [10], is the overall time that the penetrant is in contact with part of

the surface. This time varies among the materials used in each operation, while a common range

is between 5 to 60 minutes. Airbus procedure includes 10 minutes of dwell time, whenever this

stage is needed. Nevertheless, the dwell time can be adjustable as long as the penetrant is not

allowed to dry.

Figure 3.4: Penetrant Application Step [10]

Following the dwell time, the excess penetrant removal step maintains high levels of im-

portance. During this stage, the excess penetrant must be carefully removed from the surface

of the panel, while removing as fewer as possible from the potential defects. This step is per-

formed with the use of the Method A: Water-Washable; direct rinsing with water is applied to

the surface of the panel, thus removing the unnecessary penetrant. The Figure 3.5 illustrates

the method of using a solvent and a cloth in order to remove the excess penetrant with less

equipment and more careful.

Figure 3.5: Excess Penetrant Removal [10]

After a drying stage due to the water-washable technique, next step is the developer appli-
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cation. The developer is a material that enables the process of drawing the penetrant from the

defect back to the surface, where is will be visible for the inspection. These developers come

in a variety of forms and can be applied by spraying (wet developers), dusting (dry powder)

or dipping. The process that Airbus follows includes an application of developer with the use

of the dusting technique. In particular, the system used for dusting maintains high levels of

autonomy while it automatically applies dust all over the wing panel. The developing time is

the only parameter that has significant weight to this step. The developer has to stay for a prede-

fined time on the surface of the wing, sufficient to enable the extraction of the trapped penetrant

towards the surface of the panel. Common developing time fluctuates around 10 minutes, while

the duration of 10 minutes is also performed by Airbus’ procedure.

Figure 3.6: Developer Application Effect [10]

Final step of the Penetrant Testing, is the inspection process. Airbus procedure includes

special trained technicians to be inspecting the wing panel after the completion of the afore-

mentioned stages. This inspection takes from 1 hour until 4 hours, depends on the length of the

wing panel, to be completed. The process is performed in a special designed room (Figure 3.7),

under fully dark conditions, only under the light of Ultraviolet hand-lamps. The technicians

wander around the wing panel with the UV light and inspect carefully the panel with the view

of locating even the smallest possible defect. After the acquiring of the inspecting information

and the completion of the Penetrant Testing, the panel is post-cleaned with the same technique

mentioned in the pre-cleaning stage.



CHAPTER 3. NON-DESTRUCTIVE TESTING - PENETRANT FLOW DETECTION 32

Figure 3.7: Airbus Inspection Room

In the following page, a process map (Figure 3.8) of the above-described procedure of the

penetrant testing is illustrated as a stage-by-stage graph.
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3.4 Penetrant Testing - Laboratory Simulation Implementa-

tion

The simulation of similar to the aforementioned procedure had to be implemented in the lab-

oratory of Cranfield University, in order to create similar results that can be analysed by the

image analysis software package, described in the next chapter. Hence, the principles and re-

quirements of the Penetrant Testing were adapted to the lab’s standards in order to enable the

inspection process. The similarities of the above-described procedure with the simulation tech-

nique are several, yet many steps were implemented with different technique due to absence of

appropriate industrial equipment.

As one can notice in the Figure 3.3, there are two ways of the penetrant testing. The ”Lab

Use” branches of the block diagram are devoted to the laboratory simulation. Hence, a first

image of the differences can be acquired just by looking the process diagram 3.3 stated in

previous page.

Starting from the beginning, the pre-cleaning step is performed with the same option as

before. The solvent is applied to the surface of the panel, with the purpose of cleaning it from

any foreign material such as oil, grease or water. Following that, the drying process performed

by an Air-Blower, instead of oven, due to lack of similar equipment. The stage of drying main-

tained similar results, yet the drying time lasted around 15 minutes, which is more time than the

oven. Next, the penetrant application step was implemented by brushing the penetrant mate-

rial to the surface of the wing panel; the material of use was the type ARDROX 9703 or 9704.

Similar to the Airbus implementation, the dwell time stages maintained similar yet reduced du-

ration, because of the increased temperature of the laboratory environment. The most important

stage of the testing, the excess penetrant removal performed differently from the Airbus stan-

dards, due to the lack of suitable equipment. In particular, the Method C: Solvent Application is

used in order to remove the excess penetrant, by whipping the surface of the panel with the use

of the solvent ARDROX 9PR5. This technique were used by Airbus Group in their procedure
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as well, yet it is not cost efficient, due to the cost and great amount of solvent consumption, and

not so effective as the water washable. Moreover, the developer application stage performed

by spraying the material ARDROX 9D1D to the wing panel. As aforementioned in the previous

section, Airbus performs this stage by spraying dry powder towards the wing, something more

effective than the spray material used for the simulation experiments. A clear conclusion of the

simulation-used material is the undesirable glare that it creates, which reduces the effectiveness

of the UV inspection. Finally, the same techniques for the rest of the processes are the same

implemented by Airbus.

Hence, comparing the simulation method followed in the laboratory with the method im-

plemented in the Airbus plant, one can say that the industrial way is more effective than the

simulation. Nevertheless, the difference during the inspection process seemed to be equally

acceptable, yet the common measuring point differs from wing panel to wing panel. Hence, the

performance evaluation by implementing the simulation method once and having only theoret-

ical knowledge of the Airbus implementation, is something difficult to justify.

In the next page, Figure 3.9 illustrates, in similar pattern as above, the process map of the

simulation procedure of the penetrant testing on a wing panel. Following that, photographs

from the simulation process that illustrate the followed procedure are stated in the Appendix

A.3.
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Chapter 4

Automatic Detection of Defects

The Chapter of ”Automatic Detection of Defects” is focussed on the introduction and descrip-

tion of the chosen image analysis techniques, concerning the automatic detection of defects

under ultraviolet light, the explanation of the relative developed code and the illustration and

explanation of the acquired results. Specifically, the chapter will divided in the description of

the filters and detectors used for the development of this project, the extended description of the

developed code and the illustration of the results and the performance evaluation.

4.1 Theoretical Approach - Image Analysis

This section states the approaches of image processing filter, detectors and other algorithms

used for the implementation of the image processing software package. Besides the description

of the theoretical algorithms, a practical explanation with the use of the developed code will be

stated as well; the library that used for the image processing is the OpenCV - Open Computer

Vision library and coded in Python language. It is worth-mentioning that the developed script

for Video Processing is stated in the Appendix A.1.1 section. The architecture of the code is

similar to the Image Processing code, detailed as follows, with the difference of using each

frame of the video instead of one image.

37
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4.1.1 Filters

Starting from the background of the image, the Gamma Correction filter enables the algorithm

to adjust the colours of the image to the project’s standards, while it edits the background in

order to reduce the unimportant features that might affect the detection outcome. Specifically,

the non-linear filter is used in order to encode and decode the luminance in the image and it is

generally characterised by the following gamma equation:

Vout = AV γ

in (4.1)

where: Vin is the real input value, γ is the gamma correction parameter, A is a constant value

and Vout is the output value.

The principle of the gamma correction filter adopts the power function that characterises the

human perception of light and colour. This power function describes the brightness perception,

with sensitivity to the variations between dark and light tones. Hence, changing the input image

by gamma correction can cancel the non-linearity and adjust the luminance levels of the image

to the demands of the project. The formula for calculating the resulting output is as follows:

I′ = 255 ·
(

I
255

)1/γ

(4.2)

Hence, based on this equation, the developed function focusses on building a lookup table to

mapping the pixel values [0, 255] to their adjusted gamma values. In particular, the line 2 defines

the inverted gamma for the equation, while the lines 3 and 4 implement the aforementioned

equation and maps each pixel value. The output of this function is a gamma corrected image

with the use of the created look up table.

1 def adjust_gamma(image , gamma =1.0):

2 invGamma = 1.0 / gamma

3 table = np.array ([((i / 255.0) ** invGamma) * 255

4 for i in np.arange(0, 256)]).astype("uint8")

5

6 # apply gamma correction using the lookup table
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7 return cv2.LUT(image , table) �
At this point it is worth-mentioning that a conversion of the original coloured image into

a grayscale, is made in the beginning of the code. A grayscale digital image contains only

information regarding the intensity variation, while each pixel has a value of a simple sample.

The technique of converting the original image into grayscale is commonly used in the image

processing, because it enables the segmented image analysis and provides with faster results

concerning the processing of the intensity variations. The following line of code, illustrates

the implementation command of converting an coloured image into grayscale one with the use

of OpenCV library and Python language. In particular, it converts the processed with gamma

correction image, as mentioned above, to a grayscale one.

1 gray = cv2.cvtColor(adjusted , cv2.COLOR_BGR2GRAY) �
Following that, a technique of detecting the amount of blur into an image has been imple-

mented as well. The used method is the Variance of Laplacian [39]. This method utilises the

Laplacian variance of the image in order to estimate the focus measure. With respect to the

publication of [J. Pachero] et al. [40], it is based on the second derivative operator technique

”for passing the high spatial frequencies that are associated with sharp edges”. Hence, the out-

come of the second derivative operator, in which case the Laplacian operator, is an estimate of

the focus measure. The Laplacian kernel is the key matrix that can estimate the operator:

L =


0 1 0

1 −4 1

0 1 0

 (4.3)

The method that estimates the focus measure is the calculation of the variance of the abso-

lute values. In other words, it makes use of the Laplacian estimation, stated in the [40], and

calculates the variations of the values.

Laplacian Variance(I) = ∑∑[|L(m,n)− L̄|]2 (4.4)
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Providing this method, the implementation in code language with the use of the OpenCV library

is much simpler. The sub-library of OpenCV, called ”Laplacian”, provides with this technique,

while the developed code is as follows.

1 def variance_of_laplacian(image):

2 # compute the Laplacian of the image and then return the focus

3 # measure , which is simply the variance of the Laplacian

4 return cv2.Laplacian(image , cv2.CV_64F).var() �
Specifically, the function takes as input the image and returns the focus measure calculated

based on the above mentioned technique. The assumption is that if the image contains high

variance as indicated from the output of the function, there will be extensive outcomes which

leads to in-focus image. On contrary, if the image contains low variance the responses will be

a few, indicating small amount of edges in the image. This means that in the image, not many

edges can be detected and the image is blurry.

In this project of automatic detection of defects, the filters of dilation and erosion were

used as well. These morphological operations apply a structuring element to an input image

and generate an output image. Specifically, the dilation and erosion operations reduce the noise

of the image, join or isolate elements and locate the intensity bumps or holes of the image. In

the particular project, these operations are used with the view of reducing the image noise and

joining the gaps between close detected features.

The dilation operation is performed by the convolution of the image with a predefined ker-

nel, which can have any size or shape convenient to the image. The command used in the

developed code, with the use of the OpenCV library, edits the processed image from the previ-

ous filters in order to reduce the noise and close the gaps of the features. The ”edged” image is

after the application of Canny edge detection algorithm.

1 edged = cv2.dilate(edged , None , iterations =1) �
The erosion operation is the supplement of the dilation, by computing the local minimum over

the area of the kernel. Specifically, as the kernel is scanned over the image, the minimal pixel

value is computed while it replaces the image pixel under the anchor point. Similarly, with the

support of the OpenCV library, the command used to apply erosion to the processed image,
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follows.

1 edged = cv2.erode(edged , None , iterations =1) �
4.1.2 Detectors

As stated in the Chapter of Literature Review, the detector algorithms are basic methods that

process the image and extract useful structural information, such as the edges and corners. After

the implementation of the aforementioned filters, the application of a Canny Edge Detector can

easily identify the key features, in other words the defects, inside the captured image.

The multi-stage algorithm of Canny edge detector [33] is divided in 5 main steps:

• The application of Gaussian filter to smooth the image and reduce the noise.

• The estimation of the image’s intensity gradients.

• The application of a non-maximum suppression to get rid of spurious response to edge

detection.

• The edge tracking with the use of the Hysteresis method.

The Gaussian filter, as stated in the chapter of the Literature Review 2.2.1, is the most

common filter that reduces the noise and smooths the image. This filter is used by Canny edge

detector to prevent false detections caused by noise. Following that, the finding of the image’s

intensity gradients determines the direction of the detected edge. In other words, a detected

edge in an image may point in various directions, hence, one of the stages of the Canny detector

uses four filters in order to track the horizontal, vertical and diagonal edges. Every filter of

these, calculates the value of the first derivative in the horizontal and vertical direction, which

are used to determine the edge gradient and direction.

G =
√

G2
x +G2

y (4.5)

Θ = arctan2(Gy,Gx) (4.6)
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The non-maximum suppression consists an edge thinning technique. Following the application

of the gradient calculation, the edge that is extracted from the gradient value is blurry. Thus,

the non-maximum suppression provides support of suppressing the gradients to 0, except the

local maximum that indicates location with the sharpest change of intensity value. The method

of performing such filtering is by comparing the edge strength of the under-evaluation pixel,

with the edge strength of the pixel in the positive and negative gradient directions. Hence, if the

edge strength of the current pixel is larger than the value of the other pixels in the mask with

the same direction, the value of it will stay constant; otherwise, the value will be suppressed.

The nest step of the multi-stage Canny algorithm, is the implementation of a double threshold.

This filter, reduces the noise in the resulting edges by filtering out the low value gradient edges

and preserve these with high gradient value. Last but not least, the final step of the Canny edge

algorithm is the edge tracking with the use of hysteresis. In order to prevent the detection of

weak edges, blob analysis is applied to the image by analysing the weak edge pixel along with

its 8 neighbouring pixels. If the analysis of the neighbouring pixels shows up a strong pixel

included, then the weak pixel can be identified as one that should be preserved.

In the library of OpenCV the application of Canny edge detector is as simple as one com-

mand line.

1 edged = cv2.Canny(gray , 50, 50) �
In the following Figure 4.1, the grayscale processed image is illustrated side-by-side with the

output of the Canny edge detector.

Figure 4.1: Comparison view of grayscale image with the output of the Canny edge detector
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4.2 Defects Classification Technique

After the detection of the defects with the algorithms and implementations described above, the

determination of the size and position of the defects is of utmost importance. Based on the size

of the detected defect, the technician that will review the report will give more emphasis to the

size of the defects; while if he/she desires to inspect this defect in person, the coordinates with

respect to the overall size of the panel will guide him/her to the defect.

The method followed to define the size and position of each defects is based on the contour

analysis of the image. A ratio of the detected width with a known width (from an initialisation)

outputs the number of pixels per a given metric. The implementation of the size detection will

be described by analysis the developed code step-by-step.

Starting from the beginning of the implementation, the code loops over each contour in

order to analyse the included points.

1 for c in cnts:

2 # if the contour is not sufficiently large , ignore it; initial: 100

3 if cv2.contourArea(c) < 5:

4 continue

5

6 # compute the rotated bounding box of the contour

7 orig = adjusted.copy() # remove .copy() to illistrate full detected image

8 box = cv2.minAreaRect(c)

9 box = cv2.cv.BoxPoints(box) if imutils.is_cv2 () else cv2.boxPoints(box)

10 box = np.array(box , dtype="int")

11

12 # order the points in the contour such that they appear

13 # in top -left , top -right , bottom -right , and bottom -left

14 # order , then draw the outline of the rotated bounding

15 # box

16 box = perspective.order_points(box)

17 cv2.drawContours(orig , [box.astype("int")], -1, (0, 255, 0), 2) �
In the Lines 3-4, the condition of ContourArea(c) to be smaller than the value of 5, constitutes

a threshold to determine the lowest contour to be inspected. In order to detect and calculate

the size of even the smallest ones, the threshold value of 5 has been chosen. Following that,
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the Lines 8-10 are responsible for the calculation of the rotated bounding box, while the Lines

16-17 are sorting out the points in the contour from the top-left to the bottom-right and drawing

the outline of the calculated bounding box. The computed bounding box contains the local

coordinates of the contours, which represent the detected defects on the panel. These local

coordinates are translated to universal coordinates with the combination of the wing panel size

and the current position acquired from the localisation sensor.

1 # loop over the original points and draw them

2 for (x, y) in box:

3 cv2.circle(orig , (int(x), int(y)), 5, (0, 0, 255), -1) �
The loop condition is responsible for drawing a circle over each original point of the contours.

1 # unpack the ordered bounding box , then compute the midpoint

2 # between the top -left and top -right coordinates , followed by

3 # the midpoint between bottom -left and bottom -right

4 # coordinates cv2.imwrite (" adjusted.jpg",adjusted)

5

6 (tl , tr , br, bl) = box

7 (tltrX , tltrY) = midpoint(tl, tr)

8 (blbrX , blbrY) = midpoint(bl, br)

9

10 # compute the midpoint between the top -left and top -right points ,

11 # followed by the midpoint between the top -righ and bottom -right

12 (tlblX , tlblY) = midpoint(tl, bl)

13 (trbrX , trbrY) = midpoint(tr, br)

14

15 # draw the midpoints on the image

16 cv2.circle(orig , (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)

17 cv2.circle(orig , (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)

18 cv2.circle(orig , (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)

19 cv2.circle(orig , (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)

20

21 # draw lines between the midpoints

22 cv2.line(orig , (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),

23 (255, 0, 255), 2)

24 cv2.line(orig , (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),

25 (255, 0, 255), 2) �
Proceeding to the calculation of the midpoints, this is made by the function stated in the begin-

ning of the developed code and illustrated in the following two lines.
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1 def midpoint(ptA , ptB):

2 return ((ptA[0] + ptB [0]) * 0.5, (ptA[1] + ptB [1]) * 0.5) �
The midpoint function returns the middle of two points of contour. In the lines 7-13 of the code

attached above, the midpoints of the top-left, top-right, bottom-left and bottom-right points are

being calculated. In the following lines 16-19, the computed midpoints are being shaped to the

image with a circle shape. The purpose of this, is the illustration of the midpoints of the contours

to the image. Similarly, in the lines 22-25 the vertical and horizontal lines of the midpoints are

being shaped for the shape of visualisation.

1 # compute the Euclidean distance between the midpoints

2 dA = dist.euclidean ((tltrX , tltrY), (blbrX , blbrY))

3 dB = dist.euclidean ((tlblX , tlblY), (trbrX , trbrY))

4

5 # compute the size of the object

6 dimA = dA / pixelsPerMetric

7 dimB = dB / pixelsPerMetric �
The most essential calculations of this developed code is contained in the above script. The lines

2-3 are responsible for calculating the euclidean distance between the pre-computed midpoints;

the top-left-right with the bottom-left-right, and the others respectively. The lines 5-6 are of

utmost importance; they make use of the euclidean distance and the initialised pixel-per-metric

value to compute the size of the detected defect.

4.3 Results Illustration & Evaluation

The resulting images of a sample provided by Airbus Group follow, along with an explanation of

them. Unfortunately, further experiments that test the reliability of the code along with further

improvements regarding video processing or processing time in general, have to be included to

future work due to the absence of necessary components that made impossible to advance this

project in-time.

Figure 4.2 illustrates the captured image under UV light, with a material that has been

tested with the method of penetrant testing. This material consist a simulation component that
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contains numerous defects detected only by the non-destructive testing that Airbus’ technicians

performed.

Figure 4.2: Sample after Penetrant Testing with numerous defects

Based on this sample, the developed code explained in the previous sub-section maintains

results that prove the novelty of the project and implementation. Specifically, in Figure 4.3 the

gamma corrected image is displayed, while it shows the numerous defects in a more clear to the

eye way.

Figure 4.3: Adjusted image with Gamma Correction

The Figure 4.3 displays only the corrected image after the processing with the gamma cor-
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rection filter. The Canny edge detector that follows in the script, detects the above illustrated

defects and provides with input the classification code. Figure 4.4 illustrates this effect and

shows that each of the defects shown in the adjusted image, are detected from the Canny edge

detector.

Figure 4.4: Defects detected with the use of Canny edge detector

Following that, the developed code that estimates the size and position of the defects is

depicted in the Figure 4.5. The code detects each of the defects and calculates their relative

size and position to the image. Then the code translates the relative coordinates with respect to

the wing panel and stores them in an 2 dimensional array. This combined figure is consisted

by two captions of the detection and size calculation process. The outcome of the developed

code is that this component, based on the provided sample image, contains 114 detected defects

from 0.1 inch size to 0.5 inches. However, to evaluate this result along with the reliability of

the code, a comparison of the outcome with the opinion of an expert is of utmost importance.

Unfortunately, this has to be included also to the future work due to lack of provided evaluation

data, until the data of the thesis submission.
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Figure 4.5: Illustration of size and position estimation of the detected defects



Chapter 5

Hardware Implementation - Localisation

The Chapter of Hardware implementation includes the description of the hardware components

used for the implementation of this project. In particular, the KIO RTLS indoor positioning

system, the UAV platform along with the chosen processor are to be stated and described as

follows. Furthermore, the Robot Operating System (ROS) along with its implementation and

purpose of use to the project, will be stated as well. Last but not least, the code implementation

for the RTLS in order to communicate with the ROS and processor, is also to be analysed.

5.1 Localisation Sensor - RTLS

Concerning this project, the requirements for the option of the localisation sensors were several.

The most important factor is the GPS-denied environment, while the narrow room of inspection

poses the provided accuracy of the sensor to a highest level of significance. Additionally, the

parameters of cost and delivery time consisted factors of consideration, while the project was

supposed to be delivered to a specific date arrange by Cranfield University and Airbus Group.

Hence, the decision of KIO Real-Time Location System (RTLS) was the ending one, due to the

specifications that it provides.

49
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Figure 5.1: KIO RTLS Evaluation Kit [2]

5.1.1 Description of the Sensor

The KIO RTLS positioning system [2], as previously referred to the chapter of Literature Re-

view 2.1.2, uses the Ultra-Wideband technology to locate the provided tag sensor to the envi-

ronment. Specifically, the system is capable of detecting the tag hardware with Line-of-Sight

(LOS) or Non-Line-of-Sight, due to its architecture of using UWB at frequency of 3.1 - 4.8

GHz. It is worth-noting that the UWB positioning technology is stated in the section 2.1.3.

The Evaluation Kit that consists the RTLS sensor includes 1 tag and 4 anchors; the tag is

placed on-board the UAV, while the anchors are placed in the corners of the inspection room.

With the use of the Time-of-Flight method the system calculates the distance between the an-

chors and the tag, and converts this euclidean distance into a coordinate system with centre of

interest the position of the tag. This procedure happens multiple times per second due to the

higher frequency of UWB technology that is used. Furthermore, the immunity against inter-

fering obstacles is a characteristic that increases the effectiveness of the results. The power
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consumption along with the lightweight feature constituted an key parameter, as well. Each

of the the anchors and the tag maintain a power capacitor or battery, that enables the wireless

operation of these without the necessity of power charging; to charge them each hardware has

to be connected via USB cable to a power charger.

The accuracy provided by this sensors fluctuates around the 30 [cm] with the use of the

regular cell configuration, while it can reach the level of 5 cm with the small cell configura-

tion. The accuracy is strongly depended on the clearness of the Line-of-Sight. Based on the

specifications of the product, it is claimed that the error is 0.1-0.3 [cm], however this numbers

are in function of the indoor environment size and the interference from other radio frequency

sensors.

5.1.2 Trilateration Algorithm

As mentioned in the Literature Review chapter 2.1.5, the trilateration method combines the

euclidean distances from 2 or more sensors, in order to estimate the position of the intersection

point. It is worth-mentioning that in order to calculate a 3D position, it is needed to use 3 or

reader sensors (anchors). With respect to this simple technique, the RTLS sensor, used in this

project, can estimate the position of the tag based on the anchors position.

In particular, the anchors are fixed-placed in the corners of the operating room, with known

coordinates based on a pre-defined point of origin. Hence, the anchors with the technology

of UWB estimate their distances towards the receiver sensor (tag). The following equation

describes the euclidean distance of the anchors from the tag.

r2
i = (x− xi)

2 +(y− yi)
2 +(z− zi)

2 for i = 1,2,3,4→ Number of anchors (5.1)

where: ri is the distance, x,y,z are the unknown tag coordinates and xi,yi,zi are the constant

coordinates of each anchor.

Therefore, solving the 3 equations with 3 unknowns problem, results in the output of the

receiver’s coordinates.
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Based on this theoretical approach, the development of a simple code that receives the dis-

tances from the anchors and calculates the tag’s coordinates, follows along with its description.

1 def callback(self , data):

2

3 # rospy.loginfo(data.data)

4 info = data.data

5 info = info.split(" ")

6

7 # define anchor IDs and acquire distances

8 #------------------------ Anchor A ---------------------------------------#

9 anchor_a = info [1]

10 self.distance_A = float(info [2])

11 #------------------------ Anchor B ---------------------------------------#

12 anchor_b = info [3]

13 self.distance_B = float(info [4])

14 #------------------------ Anchor C ---------------------------------------#

15 anchor_c = info [5]

16 self.distance_C = float(info [6])

17 #------------------------ Anchor D ---------------------------------------#

18 anchor_d = info [7]

19 self.distance_D = float(info [8])

20

21 distance = [self.distance_A ,self.distance_B ,self.distance_C ,self.distance_D]

22

23 self.coordinates = fsolve(self.solver ,self.initial)

24 print(self.coordinates)

25

26 self.talk_x.publish(str(self.coordinates [0]))

27 self.talk_y.publish(str(self.coordinates [1]))

28 self.talk_z.publish(str(self.coordinates [2]))

29

30 self.serial_pub () �
Starting from the callback() function, it continuously receives from the Publisher script,

stated in the Appendix A.2.1, the euclidean distances of the anchors from the tag. These in-

formation have to be split from the String format into 3 values. The info.split(" ")

function detects the gap between the values of the string line and splits them into 3 strings.

Following that, the distance values distance A to distance D are float converted values that

contain the euclidean distance of each anchor, respectively. Hence, the distance values are pub-
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lished to 3 different ROS topics, with the view of sharing the information to other scripts. The

function fsolve(self.solver, self.initial) is the responsible function that solves the 3

equations problem.

1 def solver(self , coordinates):

2 x = coordinates [0]

3 y = coordinates [1]

4 z = coordinates [2]

5

6 # distance = callback ()

7 self.F[0] = pow((x - self.xan [0]) ,2) + pow((y - self.yan [0]) ,2) + pow((z - self.zan

[0]) ,2) - self.distance_A

8 self.F[1] = pow((x - self.xan [1]) ,2) + pow((y - self.yan [1]) ,2) + pow((z - self.zan

[1]) ,2) - self.distance_B

9 self.F[2] = pow((x - self.xan [2]) ,2) + pow((y - self.yan [2]) ,2) + pow((z - self.zan

[2]) ,2) - self.distance_D

10

11 return self.F �
The solver() function initialises the x,y,z coordinate values. Moreover, in this function

the euclidean equations are defined with respect to the received distances. The output of this

function is an array F [] that contains the three equations. With the use of the python function

fsolve(), the 3 equations are solved and the output is the tag coordinates x,y,z.

5.1.3 Installation - Environment & Drone

The installation of this particular sensors to the environment or on-board the drone is simple.

Starting from the drone, the tag that will be continuously located is connected to the pro-

cessor of the drone, in this case a Raspberry Pi 3, via USB. The purpose of this is to direct

transmit the positioning information towards the processor in order to be processed and used

to the operation. Additionally, this connection provides with the advantage of not depending

to the battery of the tag, while it is draining the needed energy from the large capacity battery

of the drone. The integration of the data to the system is being done with the use of the Robot

Operating System (ROS), which is to be described in the next sections.

The installation of the anchors to the corners of the environment is a procedure that demands
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more cautiousness. Firstly, a point of origin in the room has to be determined in order to evaluate

the system. This point is the zero coordinate point in the XYZ-axis, (0,0,0), while it provides

support for initialising the position of the anchors in the environment. Following that, the

anchors are placed in the corners of the room, as showed in the Figure 5.2, in which way it

provides the 3-D position.

Figure 5.2: KIO RTLS Anchor Positions

The key factor that needs caution in the installation of the RTLS is the position at least of

one of the anchors close to the main processor. One the anchors should be the ”chief anchor”,

which sends the location data to the processor that performs the trilateration method (described

in 2.1.5) in order to determine the distances of the tag and the anchors. Thus, after placing

the anchors to the corners of the inspection room, the computing of their distance in relation

to the zero coordinate point is the so-called calibration procedure. This determines the X, Y,

Z coordinates of each of the anchors in relation to a known starting point, which improves the

accuracy of the distance calculations.

KIO RTLS works sort of like an indoor GPS; by extrapolating positioning data with the

system of anchors and tags, the 4 anchors define the tracking area while the tag is located by

calculating its relative euclidean distance to each of the anchors in real-time. These raw data of

calculations are fed up to the main processor, in which they are combined to create a coordinate
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system of X, Y, Z in relation to the position of the tag. Figure 5.3 provides with an illustration

of the simple yet efficient technique that this system provides. Moreover, the implementation

of the API provided by the company to the algorithm of the project is open-source. This en-

abled the developed path-planning code along with the valuable real-time positioning data to

be implemented to the scripts of the project. The current position of the drone is used to the

image processing algorithm in order to cross-check the captured image position and to translate

correctly the detected defects to a universal coordinate system in relation to the real wing panel

length.

At this point, it is worth-mentioning that the testing of this particular sensor is included to

the short-term future work of the project, due to its delivery very close to the submission date

of this thesis.

Figure 5.3: KIO RTLS Localisation Method

5.2 UAV Platform

The chosen UAV platform for the given operation of the project is the DJI Matrice 100. How-

ever, due to several drawbacks with compatibility of other sensors, the DJI Matrice 100 had been
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modified with components that will be listed and described as follows. The Figure displays the

Matrice 100 platform as it is made from the company.

Figure 5.4: DJI Matrice 100 UAV Platform [11]

The components equipped on-board the UAV are listed below:

• Raspberry Pi 3 as processor of the drone

• Pixhawk Flight Controller as the autopilot

• Ultrasonic Sensor for the altitude control

• Ultraviolet light for the inspection operation

• KIO RTLS Tag for the localisation of the drone

• RC Receiver for emergency piloting over RC Controller

The Raspberry Pi 3 constitutes the main processor of the drone that runs the Operating

System of Linux Ubuntu Mate. It provides with a processing power of 1.2 GHz per core, while

its architecture contains a Quad-Core processor with a RAM of 1Gb. This processor coordinates

the positioning data towards the autopilot, while it receives the captured images from the image

processing algorithms and sends them to the ground computer for post-processing.
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THe Pixhawk autopilot includes one ST Micro L3GD20H 16 bit gyroscope, one ST Micro

LSM303D 14 bit accelerometer / magnetometer, one Invensense MPU 6000 3-axis accelerom-

eter/gyroscope and one MEAS MS5611 barometer. The IMU provides full real-time data with

the status of the drone in flight, that are send back to the controller of the UAV in order to

maintain the correct tuning via the feedback system.

The rest of the sensors provide supplementary information regarding the position of the

drone in the vertical axis, the ultrasonic sensor, or the continuous position of the drone in the

3D plane, from the KIO RTLS. The fusion of the altitude sensors feedback data and the RTLS

data provide a cross-checking for optimising the altitude control of the drone. The following

Figure displays the final version of the drone during the calibration process of the controller,

stated in the thesis of F. Plumacker [41].

Figure 5.5: Final Version of UAV Platform during Controller Calibration Process

5.3 Robot Operating System - ROS

The Robot Operating System (ROS) is one of the most widespread meta-operating systems for

developing robotic software applications. This OS provides the developer with an essential

tool, called Hardware Abstraction Layer (HAL), that enables the user to access the hardware

of the robot by commands. Additionally, ROS enables the communication among nodes and

services of the robot or drone. In particular, with the use of its messaging system, the developed
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algorithm can subscribe or publish information from or to a specific topic and enable the real-

time data transferring among the services of the drone. The administration of these nodes and

services maintains the ROS Master, which is a central system that allows to the nodes of the

system to communicate each other.

Figure 5.6: Robot Operating System - Nodes Inter-Communication

Hence, in the particular project the communication of the positioning system directly to the

autopilot, enables the handshake of valuable information for feedback control with no delay.

Additionally, providing access to the image output of the camera, the software script of the

image processing is able to obtain the captured image and process it directly, while it receives

real-time stamp of the position of the drone; this enables the image processing algorithm to

identify the position of the captured image in relation to the wing panel. In the appendix A.2.2

and A.2.1, the Subscriber and Publisher script concerning the positioning data acquiring from

the RTLS sensor are stated. The listener script subscribes to the relevant topic of the RTLS sen-

sor in order to obtain the data points in string and point version. The talker scripts is responsible

for publishing these data towards the system of the drone.

The essential benefit that the ROS provides is the rapid interaction among the nodes of the

drone and the transmission of data among several services.
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Discussion

This study set out to access the feasibility of automatising the process of Airbus Penetrant

Testing to aircraft wing panels. Specifically, the novelty of the project was to replace the old-

fashioned method of inspecting the wing panel, with the presence of human factor, with a fully

autonomous process using the technology of UAVs. The importance of this novelty would focus

on a significant operating time reduction, since the 1 to 4 hours inspection by technicians was

supposed to substantially decreased to an estimate of 15 minutes with the use of an autonomous

UAV, while an essential annual cost reduction provides with a strong motivation to complete

this project.

The main findings of the thesis is the feasibility of performing such delicate operation with

the use of a UAV, along with the technical capability of detecting efficiently potential defects

with the use of advanced image processing algorithms. Hence, the results stated in the previous

chapter, concerning the image processing development, illustrate for the first time the capability

of automatically detecting the defects on the wing panel for an inspection operation. Specif-

ically, the image processing software package is capable of detecting efficiently even small

defects, while a threshold can be adjusted to the standards of experts in order to ignore too

small features that might be detected. A simple classification technique, identifies the size and

relative position of the detected defects. This constitutes a task of utmost importance, which

enables the technician to record the tracked defects and categorise them by size. Additionally,
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a translation of the relative position to a universal coordinate system, in relation to the wing

panel size, provides the technician with the benefit of knowing in physical location the detected

defect. Hence, these features improve not only inspection process due to the autonomous and

automatic characteristic of the process, but facilitate the technician by providing essential tools

that can build an efficient report of every inspected wing panel. Moreover, the software provides

with the ability of review again the inspected wing panel after the completion of the process.

With this feature, the report and inspection of the wing panel maintains enhanced reliability due

to more cautious classification and evaluation of the defects.

The option of the RTLS sensor benefited the project by providing a decent accuracy of

indoor location. The provided compatibility with the ROS, along with the decision of using this

meta-operating system, enabled the system to continuously communicate with the localisation

sensor, thence, obtain positioning stamps in real-time. Thus, the KIO RTLS sensor constituted

an valuable option in terms of accuracy, compatibility and normal cost.

Unfortunately, this study maintained numerous limitations in terms of experimenting feasi-

bility. The decreased number of results are caused by the absence of significant to the operation

components. The RTLS localisation sensor was accessible to be tested a few days prior to the

thesis submission, something that made the implementation to the drone system and the installa-

tion impossible. Additionally, the Ultraviolet light delayed considerably, in a level of receiving

it the previous week of the thesis submission. Due to these delays, experiments with the UAV

in the laboratory of Cranfield University were unable to be performed, which constitutes the

dominant reason of the absence of results in the particular task of the project.

The findings of this project suggest that the approach of autonomous operation of this non-

destructive testing would also be beneficial in other sectors of the manufacturing procedure.

Namely, the maintenance sector can be taken advantage of such operation, by enabling the

autonomous inspection of an aircraft-under-maintenance. The UAV equipped with a fully au-

tonomous navigation and inspection system, can enhance the maintenance procedure with re-

spect to time decrease and overall cost reduce. Additionally, the difficult operation of inspecting

an aircraft in its upper levels, can easily be performed by this autonomous UAV.
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Although this study conducted in the region of aircraft wing manufacturing, several stud-

ies and projects have researched and developed similar inspection packages concerning wing

turbine rotor blades inspection or buildings and antennas. Hence, the idea of autonomous in-

spection with the use of UAV provides with several benefits worth investing for.

Last but not least, several question remained to be solved; the performance of the drone

during the inspection process is something that demands testing, while a better estimation of

the time of inspection with the use of the autonomous UAS needs for be determined. More

research to this area is necessary before the industrial application of this project, yet the starting

results show the technical feasibility of implementing such automation.
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Conclusions & Future Work

In this chapter, a brief reference to potential conclusions of the project will be listed, while a

future work will also be stated as follows.

7.1 Conclusions

• The feasibility of performing autonomously the inspection during the penetrant testing is

the dominant objective of this thesis. The results of the image processing along with the

specification provided by the RTLS sensor illustrated the capability of performing such

operation with an autonomous UAV.

• The detection of defects with the use of several image and video analysis algorithms were

succeeded, while the classification of the detected defects consisted an important feature.

• The Real-Time Location System consisted a decent choice in relation to the provided

accuracy and cost.

• The evaluation of the RTLS system was a limitation for this thesis project, since the delay

in delivery.

• The Non-Destructive Testing technique, the Penetrant Flow Detection, displays valuable

results in detecting potential defects on an aircraft wing panel.
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• The efficiency of fusing several image analysis filters and detectors, provided great results

concerning the correct and automatic detection of the defects.

• The size and position determination of the detected defects constitutes a beneficial tool

for the improvement of the classification technique along with the facilitation of the op-

erators/technicians.

• The effectiveness of the Penetrant Testing simulation, in comparison with the industrial

implementation, differs significantly in the Developer application, due to the glare that it

is created.

7.2 Future Work

This project’s work maintained several limitation due to delivering times of significant compo-

nents, such as the Real-Time Location System and the Ultraviolet light. Hence, essential tasks

for the evaluation of the project’s performance should be included to the future work section.

The experimental part of the project, which includes operational flights with the use of

the UAV in order to evaluate the performance of the drone during the flight, is one of the

tasks that should take place in the next steps. Additionally, the image processing algorithm

should be evaluated in concern to its performance, with the support of expert to these operations.

Important task for the improvement of the project is the automatic classification of the defects

based on their size and significance. Part of the classification, the size calculation has been

done, yet the completion of the fully automatic classification and the discard of non-defects

are of utmost importance for the advance of the project. Furthermore, the implementation of

the localisation sensor on-board the drone has to be implemented in order to be ready for a

demonstration flight. Last but not least, the most essential future work concerning this project

is the completion of the package. The project should perform complete autonomous mission

of inspection around the wing panel, inspect the panel in order to detect potential defects and

export the to a 3D wing model for illustrating them in relation to their size and position.
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This future work maintains short-term characteristics as the Airbus Group has strong interest

for the completion of this project.



Appendix A

Appendix

A.1 Developed Code

A.1.1 Video Processing Algorithm

1 from __future__ import print_function

2 from scipy.spatial import distance as dist

3 from imutils import perspective

4 from imutils import contours

5 from imutils import paths

6 from matplotlib import pyplot as plt

7

8 from std_msgs.msg import String

9 import rospy

10

11 from PIL import Image , ImageDraw

12 from PIL import ImageFilter

13

14 from scipy import signal

15 from scipy import ndimage

16

17 from skimage import feature , filter

18 from skimage.filter import threshold_otsu

19 from skimage.color import rgb2gray

20

21 import numpy as np

22 import argparse

65
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23 import imutils

24 import cv2

25 import sys , os , time

26 from math import tan

27

28

29 class VideoProcessing ():

30

31 def __init__( self ):

32

33 # construct the argument parse and parse the arguments

34 self.ap = argparse.ArgumentParser ()

35 self.ap.add_argument("-i", "--image", required=False ,

36 self.ap.add_argument("-w", "--width", type=float , default =0.5,

37 self.ap.add_argument("-t", "--threshold", type=float , default =50,

38 self.args = vars(self.ap.parse_args ())

39

40 # subscribe to topics of position to get the location values to the

script

41 self.tagX = rospy.Subscriber( "/tag_x", String , self.tag_x )

42 self.tagY = rospy.Subscriber( "/tag_y", String , self.tag_y )

43 self.tagZ = rospy.Subscriber( "/tag_z", String , self.tag_z )

44

45

46 # initialisation of wing panel

47 self.panel_length = 660

48 self.panel_height = 240

49

50 self.photos = []

51

52 self.frames_number = 0

53

54 self.cap = cv2.VideoCapture("cam_2.avi")

55 # self.cap = cv2.VideoCapture (0)

56

57 self.core()

58

59 # receive position x - function

60 def tag_x(self , data):

61 info = float(data.data)

62 self.tagx = info

63
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64 # receive position x - function

65 def tag_y(self , data):

66 info = float(data.data)

67 self.tagy = info

68

69 # receive position x - function

70 def tag_z(self , data):

71 info = float(data.data)

72 self.tagz = info

73

74 def adjust_gamma(self , image , gamma =1.0):

75 # build a lookup table mapping the pixel values [0, 255] to

76 # their adjusted gamma values

77 self.invGamma = 1.0 / self.gamma

78 self.table = np.array ([((i / 255.0) ** self.invGamma) * 255

79 for i in np.arange(0, 256)]).astype("uint8")

80

81 # apply gamma correction using the lookup table

82 return cv2.LUT(self.image , self.table)

83

84 def midpoint(self , ptA , ptB):

85 return ((ptA [0] + ptB [0]) * 0.5, (ptA[1] + ptB [1]) * 0.5)

86

87 def variance_of_laplacian(self , image):

88 # compute the Laplacian of the image and then return the focus

89 # measure , which is simply the variance of the Laplacian

90 return cv2.Laplacian(self.image , cv2.CV_64F).var()

91

92 def fov_calculation(self , aov , distance):

93 # calculates the field of view (the width of the image), based on the

94 # angle of view and the distance of the UAV from the panel.

95 # Variables: 1) aov in [degrees], 2) distance in [cm]

96 self.fov = 2 * self.distance * tan(self.aov /2)

97 return self.fov

98

99

100

101 def core(self):

102

103 while(self.cap.isOpened ()):

104

105 self.position = [self.tagx , self.tagy , self.tagz]
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106

107 self.ret , self.image = self.cap.read()

108

109 if self.args.get("video") and not self.ret:

110 break

111

112 cv2.imwrite("frame.jpg", self.image)

113 self.img = cv2.imread("frame.jpg" ,0)

114

115 # cv2.imshow (" Images", image)

116 # quit = cv2.waitKey (0)

117 # if quit == "q":

118 # QuitProgram ()

119

120

121 # # load the image and resize it

122 # self.img = Image.open(self.image)

123 # self.width , self.height = self.img.size

124

125 if cv2.countNonZero(self.img) == 0:

126 break

127 else:

128 self.gray = cv2.cvtColor(self.image , cv2.COLOR_BGR2GRAY)

129

130 # compute the focus measure of the image , using the Variance of

the Laplacian

131 self.focus_measure = self.variance_of_laplacian(self.gray)

132

133 # check whether the image is blurry or not and decide to continue

134 # if focus_measure < args[" threshold "]:

135 # print ("Blur Scale:", focus_measure , "in comparison to the

threshold value:", args[" threshold "])

136 # print (" Blurry Image: Cannot Processed ")

137 # # break

138 # else:

139 # print ("Blur Scale:", focus_measure , "in comparison to the

threshold value:", args[" threshold "])

140

141 self.gamma = 0.5

142 self.adjusted = self.adjust_gamma(self.image , self.gamma)

143 # cv2.putText(adjusted , "g={}". format (0.03) , (10, 30),

144 # cv2.FONT_HERSHEY_SIMPLEX , 0.8, (0, 0, 255), 3)



APPENDIX A. APPENDIX 69

145 # cv2.imshow (" Images", self.adjusted)

146 # self.quit = cv2.waitKey (0)

147 # if self.quit == "q":

148 # QuitProgram ()

149

150 # convert it to grayscale , and blur it slightly

151 self.gray = cv2.cvtColor(self.adjusted , cv2.COLOR_BGR2GRAY)

152 self.gray = cv2.GaussianBlur(self.gray , (7, 7), 0)

153

154 # perform edge detection , then perform a dilation + erosion to

155 # close gaps in between object edges3

156 self.edged = cv2.Canny(self.gray , 50, 50)

157 cv2.imshow("Images", self.edged)

158 self.quit = cv2.waitKey (0)

159 if self.quit == "q":

160 QuitProgram ()

161

162 self.edged = cv2.dilate(self.edged , None , iterations =1)

163 self.edged = cv2.erode(self.edged , None , iterations =1)

164

165 # find contours in the edge map

166 self.cnts = cv2.findContours(self.edged.copy(), cv2.RETR_EXTERNAL

,

167 cv2.CHAIN_APPROX_SIMPLE)

168 self.cnts = self.cnts [0] if imutils.is_cv2 () else self.cnts [1]

169 if len(self.cnts) == 0:

170 break

171 print("Error")

172

173 # sort the contours from left -to-right and initialize the

174 # "pixels per metric" calibration variable

175 (self.cnts , _) = contours.sort_contours(self.cnts)

176 self.pixelsPerMetric = None

177

178 # calculates the screen width based on the field of view

179 self.aov = 170

180 self.d = 100

181 self.screen_width = self.fov_calculation(self.aov , self.d)

182

183 self.photos.append(self.edged)

184

185 # loop over the contours individually
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186 for c in self.cnts:

187 # if the contour is not sufficiently large , ignore it;

initial: 100

188 if cv2.contourArea(c) < 5:

189 continue

190

191 # compute the rotated bounding box of the contour

192 self.orig = self.adjusted.copy() # remove .copy() to

illistrate full detected image

193 self.box = cv2.minAreaRect(c)

194 self.box = cv2.cv.BoxPoints(self.box) if imutils.is_cv2 ()

else cv2.boxPoints(self.box)

195 self.box = np.array(self.box , dtype="int")

196

197 # order the points in the contour such that they appear

198 # in top -left , top -right , bottom -right , and bottom -left

199 # order , then draw the outline of the rotated bounding

200 # box

201 self.box = perspective.order_points(self.box)

202 cv2.drawContours(self.orig , [self.box.astype("int")], -1,

(0, 255, 0), 2)

203

204 # loop over the original points and draw them

205 for (self.x, self.y) in self.box:

206 cv2.circle(self.orig , (int(self.x), int(self.y)),

5, (0, 0, 255), -1)

207

208 # unpack the ordered bounding box , then compute the

midpoint

209 # between the top -left and top -right coordinates ,

followed by

210 # the midpoint between bottom -left and bottom -right

coordinates cv2.imwrite (" adjusted.jpg",adjusted)

211

212 (self.tl , self.tr, self.br, self.bl) = self.box

213 (self.tltrX , self.tltrY) = self.midpoint(self.tl, self.tr

)

214 (self.blbrX , self.blbrY) = self.midpoint(self.bl, self.br

)

215

216 # compute the midpoint between the top -left and top -right

points ,
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217 # followed by the midpoint between the top -righ and

bottom -right

218 (self.tlblX , self.tlblY) = self.midpoint(self.tl, self.bl

)

219 (self.trbrX , self.trbrY) = self.midpoint(self.tr, self.br

)

220

221 # draw the midpoints on the image

222 cv2.circle(self.orig , (int(self.tltrX), int(self.tltrY)),

5, (255, 0, 0), -1)

223 cv2.circle(self.orig , (int(self.blbrX), int(self.blbrY)),

5, (255, 0, 0), -1)

224 cv2.circle(self.orig , (int(self.tlblX), int(self.tlblY)),

5, (255, 0, 0), -1)

225 cv2.circle(self.orig , (int(self.trbrX), int(self.trbrY)),

5, (255, 0, 0), -1)

226

227 # draw lines between the midpoints cv2.imwrite ("

adjusted.jpg",adjusted)

228

229 cv2.line(self.orig , (int(self.tltrX), int(self.tltrY)), (

int(self.blbrX), int(self.blbrY)),

230 (255, 0, 255), 2)

231 cv2.line(self.orig , (int(self.tlblX), int(self.tlblY)), (

int(self.trbrX), int(self.trbrY)),

232 (255, 0, 255), 2)

233

234 # compute the Euclidean distance between the midpoints

235 self.dA = dist.euclidean ((self.tltrX , self.tltrY), (self.

blbrX , self.blbrY))

236 self.dB = dist.euclidean ((self.tlblX , self.tlblY), (self.

trbrX , self.trbrY))

237

238 # if the pixels per metric has not been initialized , then

239 # compute it as the ratio of pixels to supplied metric

240 # (in this case , inches)

241 if self.pixelsPerMetric is None:

242 self.pixelsPerMetric = self.dB / self.args["width

"]

243

244 # compute the size of the object

245 self.dimA = self.dA / self.pixelsPerMetric
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246 self.dimB = self.dB / self.pixelsPerMetric

247

248 # register the coordinates of the contour

249 self.coordinate_system [0]. append(self.x)

250 self.coordinate_system [1]. append(self.y)

251

252

253 # draw the object sizes on the image

254 cv2.putText(self.orig , "{:.1f}in".format(self.dimA),

255 (int(self.tltrX - 15), int(self.tltrY - 10)), cv2.

FONT_HERSHEY_SIMPLEX ,

256 0.65, (255, 255, 255), 2)

257 cv2.putText(self.orig , "{:.1f}in".format(self.dimB),

258 (int(self.trbrX + 10), int(self.trbrY)), cv2.

FONT_HERSHEY_SIMPLEX ,

259 0.65, (255, 255, 255), 2)

260 cv2.putText(self.orig , "x={}".format(self.x), (30, 80),

261 cv2.FONT_HERSHEY_SIMPLEX , 0.8, (0, 0, 255), 3)

262 cv2.putText(self.orig , "y={}".format(self.y), (30, 110),

263 cv2.FONT_HERSHEY_SIMPLEX , 0.8, (0, 0, 255), 3)

264

265

266 # # show the output image

267 # cv2.imshow (" Image", orig)

268 # # orig = adjusted --> uncomment to illustrate full

detected image

269 # cv2.waitKey (0)

270

271 # print (" Number of detected defects: ", len(self.coordinates_f))

272

273

274 # calculate the total number of frames

275 self.frames_number += 1

276

277 # store every frame in one array

278 self.all_frames = np.array(self.photos)

279

280 # print frames total number

281 print(self.frames_number)

282

283 self.cap.release ()

284 cv2.destroyAllWindows ()
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285 exit()

286

287 def main():

288 rospy.init_node( "video_processing" )

289 try:

290 vp = VideoProcessing ()

291 rospy.spin()

292 except KeyboardInterrupt:

293 print("Keyboard interrupted")

294

295 if __name__ == "__main__":

296 main() �
A.1.2 Image Processing Algorithm

1 from __future__ import print_function

2 from scipy.spatial import distance as dist

3 from imutils import perspective

4 from imutils import contours

5 from imutils import paths

6 from matplotlib import pyplot as plt

7

8 from PIL import Image , ImageDraw

9 from PIL import ImageFilter

10

11 from scipy import signal

12 from scipy import ndimage

13

14 from skimage import feature , filter

15 from skimage.filter import threshold_otsu

16 from skimage.color import rgb2gray

17

18 import numpy as np

19 import argparse

20 import imutils

21 import cv2

22 import sys , os , time

23

24 def adjust_gamma(image , gamma =1.0):

25 # build a lookup table mapping the pixel values [0, 255] to

26 # their adjusted gamma values
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27 invGamma = 1.0 / gamma

28 table = np.array ([((i / 255.0) ** invGamma) * 255

29 for i in np.arange(0, 256)]).astype("uint8")

30

31 # apply gamma correction using the lookup table

32 return cv2.LUT(image , table)

33

34 def midpoint(ptA , ptB):

35 return ((ptA[0] + ptB [0]) * 0.5, (ptA[1] + ptB [1]) * 0.5)

36

37 def variance_of_laplacian(image):

38 # compute the Laplacian of the image and then return the focus

39 # measure , which is simply the variance of the Laplacian

40 return cv2.Laplacian(image , cv2.CV_64F).var()

41

42

43 # construct the argument parse and parse the arguments

44 ap = argparse.ArgumentParser ()

45 ap.add_argument("-i", "--image", required=True ,

46 help="path to the input image")

47 ap.add_argument("-w", "--width", type=float , required=True ,

48 help="width of the left -most object in the image (in inches)")

49 ap.add_argument("-t", "--threshold", type=float , default =75.0 ,

50 help="focus measures that fall below this value will be considered blurry")

51 args = vars(ap.parse_args ())

52

53 # load the image and resize it

54 image = cv2.imread(args["image"])

55 image = cv2.resize(image , (1236 , 1237))

56 gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

57

58 # compute the focus measure of the image , using the Variance of the Laplacian

59 focus_measure = variance_of_laplacian(gray)

60

61 # check whether the image is blurry or not and decide to continue

62 if focus_measure < args["threshold"]:

63 print("Blur Scale:", focus_measure , "in comparison to the threshold value:", args

["threshold"])

64 print("Blurry Image: Cannot Processed")

65 exit()

66 else:
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67 print("Blur Scale:", focus_measure , "in comparison to the threshold value:", args

["threshold"])

68

69 adjusted = adjust_gamma(image , 0.02)

70 cv2.putText(adjusted , "g={}".format (0.03) , (10, 30),

71 cv2.FONT_HERSHEY_SIMPLEX , 0.8, (0, 0, 255), 3)

72 cv2.imshow("Images", adjusted)

73 quit = cv2.waitKey (0)

74 if quit == "q":

75 QuitProgram ()

76

77 # convert it to grayscale , and blur it slightly

78 gray = cv2.cvtColor(adjusted , cv2.COLOR_BGR2GRAY)

79 gray = cv2.GaussianBlur(gray , (7, 7), 0)

80

81 # perform edge detection , then perform a dilation + erosion to

82 # close gaps in between object edges3

83 edged = cv2.Canny(gray , 50, 50)

84 edged = cv2.dilate(edged , None , iterations =1)

85 edged = cv2.erode(edged , None , iterations =1)

86

87 # find contours in the edge map

88 cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL ,

89 cv2.CHAIN_APPROX_SIMPLE)

90 cnts = cnts [0] if imutils.is_cv2 () else cnts [1]

91

92 # sort the contours from left -to-right and initialize the

93 # pixels per metric calibration variable

94 (cnts , _) = contours.sort_contours(cnts)

95 pixelsPerMetric = None

96

97 coordinate_system = [[] ,[]]

98

99 # loop over the contours individually

100 for c in cnts:

101 # if the contour is not sufficiently large , ignore it; initial: 100

102 if cv2.contourArea(c) < 5:

103 continue

104

105 # compute the rotated bounding box of the contour

106 orig = adjusted.copy() # remove .copy() to illistrate full detected image

107 box = cv2.minAreaRect(c)
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108 box = cv2.cv.BoxPoints(box) if imutils.is_cv2 () else cv2.boxPoints(box)

109 box = np.array(box , dtype="int")

110

111 # order the points in the contour such that they appear

112 # in top -left , top -right , bottom -right , and bottom -left

113 # order , then draw the outline of the rotated bounding

114 # box

115 box = perspective.order_points(box)

116 cv2.drawContours(orig , [box.astype("int")], -1, (0, 255, 0), 2)

117

118 # loop over the original points and draw them

119 for (x, y) in box:

120 cv2.circle(orig , (int(x), int(y)), 5, (0, 0, 255), -1)

121

122 # unpack the ordered bounding box , then compute the midpoint

123 # between the top -left and top -right coordinates , followed by

124 # the midpoint between bottom -left and bottom -right coordinates cv2.imwrite ("

adjusted.jpg",adjusted)

125

126 (tl , tr , br, bl) = box

127 (tltrX , tltrY) = midpoint(tl, tr)

128 (blbrX , blbrY) = midpoint(bl, br)

129

130 # compute the midpoint between the top -left and top -right points ,

131 # followed by the midpoint between the top -righ and bottom -right

132 (tlblX , tlblY) = midpoint(tl, bl)

133 (trbrX , trbrY) = midpoint(tr, br)

134

135 # draw the midpoints on the image

136 cv2.circle(orig , (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)

137 cv2.circle(orig , (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)

138 cv2.circle(orig , (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)

139 cv2.circle(orig , (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)

140

141 # draw lines between the midpoints cv2.imwrite (" adjusted.jpg",adjusted)

142

143 cv2.line(orig , (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),

144 (255, 0, 255), 2)

145 cv2.line(orig , (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),

146 (255, 0, 255), 2)

147

148 # compute the Euclidean distance between the midpoints
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149 dA = dist.euclidean ((tltrX , tltrY), (blbrX , blbrY))

150 dB = dist.euclidean ((tlblX , tlblY), (trbrX , trbrY))

151

152 # if the pixels per metric has not been initialized , then

153 # compute it as the ratio of pixels to supplied metric

154 # (in this case , inches)

155 if pixelsPerMetric is None:

156 pixelsPerMetric = dB / args["width"]

157

158 # compute the size of the object

159 dimA = dA / pixelsPerMetric

160 dimB = dB / pixelsPerMetric

161

162 # register the coordinates of the contour

163 coordinate_system [0]. append(x)

164 coordinate_system [1]. append(y)

165

166 # draw the object sizes on the image

167 cv2.putText(orig , "{:.1f}in".format(dimA),

168 (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX ,

169 0.65, (255, 255, 255), 2)

170 cv2.putText(orig , "{:.1f}in".format(dimB),

171 (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX ,

172 0.65, (255, 255, 255), 2)

173 cv2.putText(orig , "x={}".format(x), (10, 30),

174 cv2.FONT_HERSHEY_SIMPLEX , 0.8, (0, 0, 255), 3)

175 cv2.putText(orig , "y={}".format(y), (10, 60),

176 cv2.FONT_HERSHEY_SIMPLEX , 0.8, (0, 0, 255), 3)

177

178

179 # show the output image

180 cv2.imshow("Image", orig)

181 # orig = adjusted --> uncomment to illustrate full detected image

182 cv2.waitKey (0)

183

184 print("Number of detected defects: ", len(coordinate_system [0])) �
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A.2 Positioning Scripts

A.2.1 Publisher Script

1 import roslib

2 import rospy

3 from geometry_msgs.msg import Point

4 from std_msgs.msg import String

5 import serial

6

7 ser = serial.Serial("/dev/ttyACM2", 9600)

8

9 def talker ():

10 pub = rospy.Publisher("kio_rtls_points", String , queue_size =10)

11 rospy.init_node("kio_rtls_talker", anonymous=True)

12 rate = rospy.Rate (10) # 10Hz

13

14 while not rospy.is_shutdown ():

15

16 data= ser.readline ()

17 if (str(data).startswith("data: TargetNew")):

18 data = data.split(" ")

19 distance = data [4]

20

21 # rospy.loginfo(data)

22 pub.publish(String(data))

23

24

25 if __name__ == "__main__":

26

27 talker () �
A.2.2 Subscriber & Trilateration Script

1 import sys

2 import rospy

3

4 from std_msgs.msg import String , Int32MultiArray

5 from numpy import *

6 from scipy.optimize import *
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7

8 import serial

9 import numpy as np

10

11 import warnings

12 warnings.filterwarnings("ignore", "The iteration is not making good progress")

13

14 class Trilateration ():

15

16 def __init__( self ):

17

18 # rospy.init_node (" kio_rtls_listener", anonymous=True)

19

20 rospy.Subscriber("/kio_rtls_points", String , self.callback)

21 self.talk_x = rospy.Publisher("tag_x", String , queue_size =10)

22 self.talk_y = rospy.Publisher("tag_y", String , queue_size =10)

23 self.talk_z = rospy.Publisher("tag_z", String , queue_size =10)

24

25 self.F = empty ((3))

26 self.initial = array ([1,1,1])

27

28 self.xan = [1.24 , 14.73, 14.72, 1.250]

29 self.yan = [16.15 , 16.25 , -1.225, -1.24]

30 self.zan = [3.1, 0.3, 3.08, 0.34]

31

32 self.ser = serial.Serial(

33 port="/dev/ttyUSB0",

34 baudrate =57600 ,

35 )

36

37 def callback(self , data):

38

39 # rospy.loginfo(data.data)

40 info = data.data

41 info = info.split(" ")

42

43 # define anchor IDs and acquire distances

44 #------------------------ Anchor A ---------------------------------------#

45 anchor_a = info [1]

46 self.distance_A = float(info [2])

47 #------------------------ Anchor B ---------------------------------------#

48 anchor_b = info [3]
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49 self.distance_B = float(info [4])

50 #------------------------ Anchor C ---------------------------------------#

51 # anchor_c = info [5]

52 # self.distance_C = float(info [6])

53 # #------------------------ Anchor D ---------------------------------------#

54 anchor_d = info [7]

55 self.distance_D = float(info [8])

56

57 # distance = [self.distance_A ,self.distance_B ,self.distance_C ,self.distance_D]

58

59 self.coordinates = fsolve(self.solver ,self.initial)

60 print(self.coordinates)

61

62 self.talk_x.publish(str(self.coordinates [0]))

63 self.talk_y.publish(str(self.coordinates [1]))

64 self.talk_z.publish(str(self.coordinates [2]))

65

66 self.serial_pub ()

67

68

69 def serial_pub(self):

70

71 if self.ser.isOpen ():

72 self.ser.write(str(self.coordinates))

73 # self.ser.write ("6")

74

75 def solver(self , coordinates):

76 x = coordinates [0]

77 y = coordinates [1]

78 z = coordinates [2]

79

80 # distance = callback ()

81 self.F[0] = pow((x - self.xan [0]) ,2) + pow((y - self.yan [0]) ,2) + pow((z - self.

zan [0]) ,2) - self.distance_A

82 self.F[1] = pow((x - self.xan [1]) ,2) + pow((y - self.yan [1]) ,2) + pow((z - self.

zan [1]) ,2) - self.distance_B

83 self.F[2] = pow((x - self.xan [2]) ,2) + pow((y - self.yan [2]) ,2) + pow((z - self.

zan [2]) ,2) - self.distance_D

84

85 return self.F

86

87 def main():
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88 rospy.init_node( "drone_position" )

89 af = Trilateration ()

90 try:

91 rospy.spin()

92 except KeyboardInterrupt:

93 print "Keyboard interrupted"

94 # af.usb_service ()

95

96 if __name__ == "__main__":

97 main() �
A.3 Penetrant Testing

Figure A.1: Fluorescent Penetrant Material
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Figure A.2: Penetrant Application Stage

Figure A.3: Penetrant Application Stage - Under UV Light
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Figure A.4: Inspection Sample Photograph - Detected Defects

Figure A.5: Inspection Sample Photograph - Detected Defects
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Figure A.6: Inspection Sample Photograph - Detected Defects
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